* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak

Dydis: px
Rodyti nuo puslapio:

Download "* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak"

Transkriptas

1 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra aibė erdvės taškų kurių atstumas nuo taško lygus. Pažymėkime bet kurio tokio taško koordinates. Taigi " $ Arba % '&) +-. &0/ 1 &)3 $. Iš čia gauname sferos lygtį duotoje koordinačių sistemoje 45&0 &)/.6&73 Tarkime kad 3. Tada turime apskritimo lygtį 4'&) &0/ Bendru atveju linijos lygtis plokštumoje užrašoma taip: 89 ;: Pastebėkime kad atvejį 3 reikia skirti nuo atvejo skaičius kai turime cilindro lygtį: 849 <: -9 - bet kuris realusis Erdvės taškų aibės gali būti išreikštos lygtimis ir nelygybėmis 89 = ;: CB 9 = ED : 4=FG Pavyzdžiui rutulio su centru taške ir spinduliu taškai tenkina nelygybę 45&).H&0/ &)3 JI K Pastebėkime dar kad lygtis 89 = &LK 89 <: ekvivalenti nelygybei 849= ED :

2 1 TIESĖS IR PLOKŠTUMOS 1.1. Algebrinės lygtys ir paviršiai Apibrėžimas Algebrinis paviršius taškų apibrėžtų lygtimi + ;: Skaičius " "%$%$%$ " '& ) vadinamas šios algebrinės lygties eile ir algebrinio paviršiaus laipsniu. Kai į lygtį neįeina kintamasis turime - tosios eilės laipsnio) linija: + - ;:. Teorema eilės invariantiškumas) Jei linija paviršius) kurioje nors Dekarto koordinačių sistemoje aprašoma ) lygtimi tai bet kurioje kitoje Dekarto koordinačių sistemoje ji išreiškiama to pačio pavidalo ir tos pačios eilės lygtimi. Įrodymas. Koordinačių sistemos pakeitimas reiškia naujų koordinačių įvedimą: 0/ 1/ 0/ 1/ Įstačius šiuos reiškinius į ) lygtį gausime to pačio laipsnio polinomą. 1. Parametrinės kreivės ir paviršiaus lygtys Tarkime kad kreivė yra judančio taški trajektorija. Jei kiekvienu laiko momentu yra žinoma taško 49 padėtis tai jo koordinatės yra parametro funkcijos :9 ; Šios lygtys yra vadinamos kreivės erdvėje parametrinėmis lygtimis. Kai nėra koordinatės turime kreivę plokštumoje. Parametro fizikinė prasmė nėra svarbi. Pavyzdžiai Parametrinės apibrėžia apskritimą plokštumoje su centru koordinačių pradžioje ir spinduliu.

3 1 TIESĖS IR PLOKŠTUMOS 3 Tarkime kad turime dar ir tokį kintamąjį : < D C Tai yra vadinamos sraigtinės kreivės parametrinės lygtys. Ji priklauso spindulio cilindrui. Apibendrinkime parametrines lygtis ir įveskime du parametrus: :9 ; Šios lygtys vadinamos paviršiaus parametinėmis lygtimis. Kūgio parametrinės lygtys

4 1 TIESĖS IR PLOKŠTUMOS Tiesiu ir plokštumu lygtys Pirmosios eilės linijos ir paviršiai : Pirmosios eilės arba tiesine lygtimi vadinama ;: Reikalaujama dar. Kai į lygtį neįeina turime tašką 9 plokštumoje. Teorema. Pirmosios eilės lygtimi išreiškima tam tikra plokštuma tiesė). Bet kurios plokštumos tiesės) taškai yra pirmosios eilės lygties sprendiniai Tiesės parametrinės lygtys Tarkime kad tiesė & eina per tašką lygiagrečiai vektoriui Tada bet kuriam tiesės & 9 taškui turime K K. Arba.

5 1 TIESĖS IR PLOKŠTUMOS 5. Tada tiesės lygtį pert- Taigi turime tiesės & parametrines lygtis: 43 5&) H&0 + 6&) + Tarkime kad nagrinėjama tiesė plokštumoje varkome taip: '&) &) Pažymėję & gauname tiesės lygtį &).H&0 <: arba Tarkime kad ;: & J& ;:. Tada tiesės lygtį galima išspręsti ordinatės atžvilgiu: / & / &

6 & 1 TIESĖS IR PLOKŠTUMOS 6 Koeficientas D 7 yra vadinamas tiesės krypties koeficientu. Kampas tarp dviejų plokštumoje tiesių / ir / yra 87 & " ir gali būti apskaičiuotas taip: " & D D " & D " D D 7 arba Tiesės yra statmenos kai arba D. Taigi turime :. Tiesės yra lygiagrečios kai ;: t. y Plokštumos parametrinės lygtys. Tarkime kad plokštuma eina per tašką lygiagrečiai nekolinieariems vektoriams ir. Tada bet kuriam plokštumos

7 1 TIESĖS IR PLOKŠTUMOS 7 yra plokštumoje ir gali būti išreikštas nekolin- 49= taškui vektorius ieariais vektoriais : Taigi gauname plokštumos parametrines lygtis: 43 5&) 5 64 H&0 6&) Tiesės ir plokštumos vektorinės lygtys Tarkime kad plokštuma eina per FG ir yra statmena vektoriui kuris vadinamas plokštumos normaliuoju vektoriumi. Pažymėkime vektorių 4 F. Esant bet kuriam yra statmenas plokštumai. 49= gauname plokštumos vektorinę lygtį: & ;: Perrašome šią lygtį koordinatėmis: '&. &0F ; &) ;: arba <: & & F & Tarkime į visus reiškinius neįeina koordinatė. Tada turime vektorius plokštumoje ir lygtimi <: išreiškiama tiesė einantį per plokštumos statmenai vektoriui H Tiesių ir plokštumų statmenumas Dvi plokštumos tiesės) ir yra statmenos kai jų normalieji vektoriai yra statmeni. Kai plokštumos tiesės) ir išreiškiamos lygtimis ;: ;: ir

8 1 TIESĖS IR PLOKŠTUMOS 8 normalųjų vektorių statmenumo sąlyga: : Plokštumos tiesės) yra lygiagrečios kai jų normalieji vektoriai yra kolinearūs:. Arba lygiagretumo sąlygos koordinatėmis: Pavyzdys Raskime plokštumos einančios per tašką lygiagrečiai plokštumai lygtį. Sprendimas. Plokštumos 6 normalusis vektorius yra : :. Taigi : ir ieškomos plokštumos lygtis yra :. Kai & plokštuma eina per tašką Tiesės erdvėje lygtys Tiesė erdvėje gali būti apibrėžta kaip dviejų plokštumų susikirtimas: ;: ;: Tiesė apibrėžta kai šios dvi plokštumos nėra lygiagrečios. Tai reiškia kad rang Ši lygybė galioja tada ir tik tada kai bent vienas iš trijų determinantų nelygus nuliui Tarkime kad į šią sistemą neįeina kintamasis. Tada sistemos sprendinys yra tiesių susikirtimo taškas. Šis taškas yra vienintelis kai pirmasis determinantas nelygus nuliui.

9 1 TIESĖS IR PLOKŠTUMOS Tiesiu ir plokštumu pagrindinai uždaviniai Tiesės einančios per du taškus lygtis Tarkime kad tiesė eina per du erdvės taškus 49= bet kuriam tiesės taškui turime K K. Arba '&7 H& 6&7 & &7 &). Tada 1.4. Plokštumos einančios per tris taškus lygtis 4 Tarkime kad plokštuma eina per tris taškus 4 49 kurie nepriklauso vienai tiesei. Tada esant bet kuriam plokštumos taškui vektoriai ir yra komplanarūs. Taigi :. Arba koordinatėmis: 5& &0 &) 5& &0 &) : 5& &0 &) Pastebėkime kad jei vektoriai tapačiai lygus nuliui. ir yra kolinearūs šis determinantas Tiesės ir plokštumos lygiagretumo sąlygos Tiesė & yra lygiagreti plokštumai arba yra šioje plokštumoje) ;: kai vektorius yra statmenas plokštumos normaliajam vektoriui. Arba <: Tarkime kad tiesė apibrėžta tiesinėmis lygtimis ;: ;: Tada vektorių galima rasti kaip šių plokštumų normaliųjų vektorių ir vektorinę sandaugą

10 1 TIESĖS IR PLOKŠTUMOS 10 Todėl tiesės ir plokštumos lygiagretumo sąlygą galima užrašyti taip: <: Lygtys atkarpomis Plokštumos atkarpomis lygtis / 3 Skaičių / 3 geometrinė prasmė parodyta paveiksle

11 1 TIESĖS IR PLOKŠTUMOS 11 Tiesės lygtis atkarpomis / Taško atstumas nuo plokštumos & K K K & K K K Tarkime kad plokštumos lygtis yra G <: 9 = 4 F 4 Raskime taško atstumą nuo šios plokštumos. Plokštuma eina per G tašką ). Gretasienio sudaromo vektoriais tūris lygus. Taško atstumas nuo plokštumos yra šito gretasienio aukštinė. Kadangi turime. Čia gretasienio pagrindo plotas. Taigi

12 K K 1 TIESĖS IR PLOKŠTUMOS 1 Vektorių vektorinę sandaugą galima pakeisti plokštumos normaliuoju vektoriumi. Tada K & K K K Pažymėję & & F & tai reiškia kad taškas prikauso plokštumai <: & ) gauname & & &. 4 Taigi taško atstumas nuo plokštumos : lygus K Taško atstumas nuo tiesės Plokštumos taško atstumas nuo tiesės K 1 <: lygus Atstumas tarp nelygiagrečių tiesių erdvėje Tiesių einančių per taškus ir ir lygtys yra & & 9 lygiagrečiai vektoriams Atstumas tarp šių tiesių K & K K K

(Microsoft Word - Pasiruo\360imas EE 10 KD-1)

(Microsoft Word - Pasiruo\360imas EE 10  KD-1) -as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.

Detaliau

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l 9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios

Detaliau

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3)

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių 11-12 klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) 4, 4 (5 6) 7, 7 (8 9) 10,..., 2014 (2015 2016) 2017.

Detaliau

Microsoft PowerPoint Ekstremumai_naujas

Microsoft PowerPoint Ekstremumai_naujas Kelių kintamųjų funkcijos lokalūs ekstremumai. Ekstremumų egzistavimo būtina ir pakankama sąlygos. Sąlyginiai ekstremumai. Lagranžo daugikliai. Didžiausioji ir mažiausioji funkcijos reikšmės uždaroje srityje.

Detaliau

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys G E O M E T R I J A Gediminas STEPANAUSKAS 016 09 1 Turinys 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir tieses plok²tumoje normalines lygtys 111 Vektorine forma 11 Koordinatine forma 3 1 Bendroji plok²tumos

Detaliau

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant

Detaliau

MatricosDetermTiesLS.dvi

MatricosDetermTiesLS.dvi MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to

Detaliau

lec10.dvi

lec10.dvi paskaita. Euklido erdv_es. pibr_ezimas. Vektorin_e erdv_e E virs realiuju skaiciu kuno vadinama Euklido erdve, jeigu joje apibr_ezta skaliarin_e sandauga, t.y. tokia funkcija, kuri vektoriu porai u; v

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 12 paskaita 2019-05-08 Norint kažką sukonstruoti, reikia... turėti detalių. 13 paskaitos tikslas Susipažinti su python modulio add.py 1.1 versija. Sukurti skaitmeninį modelį

Detaliau

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų Atranka į 019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų skaičių seką a 1, a, a 3,..., o tada apibrėžė naują

Detaliau

PS_riba_tolydumas.dvi

PS_riba_tolydumas.dvi Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos

Detaliau

10 Pratybos Oleg Lukašonok 1

10 Pratybos Oleg Lukašonok 1 10 Pratybos Oleg Lukašonok 1 2 Tikimybių pratybos 1 Lema Lema 1. Tegul {Ω, A, P} yra tikimybinė erdvė. Jeigu A n A, n N, tai i) P (lim sup A n ) = P ( k=1 n=k A n ) = lim P ( n k n=ka n ), nes n=ka n monotoniškai

Detaliau

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali VI TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 61 Teoremos apie tolydžiu tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami realiu ju skaičiu savybes atkreipėme dėmesi i tokia šios aibės elementu

Detaliau

Priedai_2016.indd

Priedai_2016.indd 1 testo užduočių vertinimo kriterijai Užd. Nr. Sprendimas ar atsakymas Taškai Vertinimas 1 Pasirinktas variantas D 1 Už teisingą atsakymą. 2 a) 939 1 Už teisingą atsakymą. 2 b) 1538 1 Už teisingą atsakymą.

Detaliau

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at MTEMTIKS BRNDS EGZMIN PRGRMS MINIMLIUS REIKLVIMUS ILIUSTRUJNTYS PVYZDŽII Egzamino programos minimalūs reikalavimai.. Paprastais atvejais patikrinti, ar duotoji seka ra aritmetinė/geometrinė progresija.

Detaliau

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų

Detaliau

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem. 2018 m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta grafų algoritmams, tačiau apibrėžus gretimumo matricą

Detaliau

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje

Detaliau

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį.

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį. 00 Nustatykite funkcijos f() = +2 6 cos ( 3) apibrėžimo sritį (, 0) (0, 2) (2, + ) 2 (, 2) ( 2, + ) 3 (, 2] 4 [ 2, + ) 5 [2, ) 6 (, 2] 7 (, + ) 8 [ 2, 0) (0, + ) 0 (, 2) (2, + ) { a + b, kai 7, Raskite

Detaliau

Microsoft PowerPoint Dvi svarbios ribos [Read-Only]

Microsoft PowerPoint Dvi svarbios ribos [Read-Only] Dvi svarbios ribos Nykstamųjų funkcijų palyginimas. Ekvivalenčios nykstamosios funkcijos. Funkcijos tolydumo taške apibrėžimas. Tolydžiųjų funkcijų atkarpoje savybės. Trūkiosios funkcijos. Trūko taškų

Detaliau

QR algoritmas paskaita

QR algoritmas paskaita Turinys QR algoritmas 4 paskaita Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 4 5 TA skaitiniai metodai ( MIF VU) Tiesinių lygčių sistemų sprendimas / 40 TA skaitiniai

Detaliau

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee 001 x 1 2 + x + 12 lim x 4 2x 1 2; 0; 2 1 2; 5 1; 6 2; ; 1 2 4 riba neegzistuoja; 14x 2 2 + 29 lim x 1x 2 + 4x + 9 1 1; 2 29 9 ; ; 4 0; 5 riba neegzistuoja; 6 1 14; 14 1; 14 x + 1 lim x 4 x 4 1 riba neegzistuoja;

Detaliau

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa III SVEIKI NENEIGIAMI SKAIČIAI 31 Indukcijos aksioma Natūraliu aibės sa voka viena svarbiausiu matematikoje Nors natūralaus skaičiaus sa voka labai sena, bet šio skaičiaus buveinės sa voka buvo suformuluota

Detaliau

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul lgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7. pibr eµzimas. Matrica yra m eiluµciu¾ir n stulpeliu¾turinti staµciakamp e lentel e su joje i¾rašytais

Detaliau

DĖL APLINKOS IR SVEIKATOS MOKSLO KOMITETO ĮSTEIGIMO

DĖL APLINKOS IR SVEIKATOS MOKSLO KOMITETO ĮSTEIGIMO LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS ĮSAKYMAS DĖL LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRO 011 M. KOVO D. ĮSAKYMO NR. V-199 DĖL LIETUVOS HIGIENOS NORMOS HN 80:011 ELEKTROMAGNETINIS

Detaliau

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo XI skyrius KŪNAI 1 Kūno sa voka 1 1 Šiame skyriuje nagrinėsime kūnus Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijos dėsniai, žymimi + ir, ir vadinami aibės k elementu sudėtimi

Detaliau

Isvestiniu_taikymai.dvi

Isvestiniu_taikymai.dvi IŠVESTINIŲ TAIKYMAI Pagrindinės analizės teoremos Monotoninės funkcijos išvestinė Funkcijos ekstremumai Funkcijos didžiausia ir mažiausia reikšmės intervale Kreivės iškilumas Funkcijos grafiko asimptotės

Detaliau

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V L I T U V O S J U N Ų J Ų T T I K Ų O K Y K L. TRIKPIŲ ČVINOS (017 019) Teorinę medžiagą parengė ir antrąją užduotį sudarė Vilniaus universiteto docentas dmundas azėtis atematikos pamokose nagrinėjamos

Detaliau

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm BaziniaiSprendiniai&KrastutiniaiTaskai.wxm / Baziniai sprendiniai ir kraštutiniai taškai (C) A.Domarkas, VU, 25 žr.: [] 2-252; [2] 9-98; [3] 33-; [] 89-98; [5] 6.3 Tegul tiesinių lygčių sistemos nežinomųjų

Detaliau

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s},

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, B 1 = {{i, p}, {i, e}, {z, e}, {u, e}, {u, s}}. Grafai

Detaliau

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis

Detaliau

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas 001 1 Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp grafo ({q, w, r, g}, {{q, w}, {w, r}, {w, g}}) viršūnių

Detaliau

Microsoft Word - Liuminescencija_teorija

Microsoft Word - Liuminescencija_teorija 2. BOLOGNŲ OBJEKTŲ LUMNESCENCJA. 2.1 Įvadas. Liuminescencijos reiškinys Daugelis fotofizikinių ir fotocheminių vyksmų yra šviesos sąveikos su bioobjektu pasekmės. Vienas iš pagrindinių šviesos emisijos

Detaliau

Algoritmø analizës specialieji skyriai

Algoritmø analizës specialieji skyriai VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo

Detaliau

6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloniečių arba Herono algoritmas. Jau žiloje senovėje reikėjo mokėti traukti kavadratinę šaknį. Yra išlikęs

6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloniečių arba Herono algoritmas. Jau žiloje senovėje reikėjo mokėti traukti kavadratinę šaknį. Yra išlikęs 6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloiečių arba Heroo algoritmas. Jau žiloje seovėje reikėjo mokėti traukti kavadratię šakį. Yra išlikęs Heroo iš Aleksadrijos gyveusio I mūsų eros amžiuje veikalas

Detaliau

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, 0--. Magdalena Raseiniškė mėgsta pradėti bet kurį darbą tokiu uždaviniu, kurį, kaip ji sako,

Detaliau

32 LT Europos Sąjungos oficialusis leidinys 13/11 t L EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS L 366/17 KOMISIJOS DIREKTYVA 1991 m.

32 LT Europos Sąjungos oficialusis leidinys 13/11 t L EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS L 366/17 KOMISIJOS DIREKTYVA 1991 m. 32 LT Europos Sąjungos oficialusis leidinys 13/11 t. 31991L0663 1991 12 31 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS L 366/17 KOMISIJOS DIREKTYVA 1991 m. gruodžio 10 d. derinanti su technikos pažanga Tarybos

Detaliau

17 - Techniniai reikalavimai breziniuose.doc

17 - Techniniai reikalavimai breziniuose.doc 17. 17.1. Techniniai reikalavimai daro rėžiniuose Laisvų matmenų (matmenų, kurių nuokrypiai nenurodyti) ir nenurodyti padėties ei formos nuokrypiai turi atitikti nuokrypių klases, nusakomas ISO 2768 ir

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-28 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti.

Detaliau

Microsoft Word - 8 Laboratorinis darbas.doc

Microsoft Word - 8 Laboratorinis  darbas.doc Laboratorinis darbas Nr. 8 MOP (metalo sido puslaidininkio) struktūrų tyrimas aukštadažniu -V charakteristikų metodu Darbo tikslas: 1. Nustatyti puslaidininkio laidumo tipą. 2. Nustatyti legiravimo priemaišų

Detaliau

Magistro darbas

Magistro darbas KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS KOMPIUTERIŲ KATEDRA Vitalijus Martusevičius Mikrosensorinio tinklo autolokacijos sistemos sudarymas ir tyrimas Magistro darbas Darbo vadovas prof.

Detaliau

Duomenų vizualizavimas

Duomenų vizualizavimas Duomenų vizualizavimas Daugiamačių duomenų vizualizavimas: projekcijos metodai Aušra Mackutė-Varoneckienė Tomas Krilavičius 1 Projekcijos metodai Analizuojant daugiamačius objektus, kuriuos apibūdina n

Detaliau

1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ

1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ Vaizdu vidurkinimas ir požymiu išskyrimas. Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v (x) = + x ) e x, x (, ). () Čia yra filtro parametras. Kad

Detaliau

LMR200.dvi

LMR200.dvi Liet. matem. rink, 47, spec. nr., 27, 259 267 Lietuvos moksleiviu matematikos olimpiados 7 uždaviniuapžvalga Juozas Juvencijus MAČYS (MII) el. paštas: jmacys@ktl.mii.lt 56-oji Lietuvos moksleiviu matematikos

Detaliau

ŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORT

ŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORT ŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORTELĖ UŽDAVINIO NUMERIS TEISINGAS ATSAKYMAS. D. E. A

Detaliau

BASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikit

BASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikit BASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikite aikštelės nuţymėjimą po baseinu, pašalinkite augalus,

Detaliau

5_3 paskaita

5_3 paskaita EKONOMIKOS INŽINERIJA Parengė: doc. dr. Vilda Gižienė 4. PRODUKTO GAMYBOS TECHNOLOGIJA Temos: 4.7.Įmonės pelnas ir jo maksimizavimas 4.7.1. Konkuruojančios firmos pajamos. 4.7.2. Pelno maksimizavimas trumpuoju

Detaliau

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2016-02-15 Tiesinės duomenų struktūros Panagrinėsime keletą žinomų ir įvairiuose taikymuose naudojamų

Detaliau

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai MATLAB komandų seka, vadinama programa, įrašyta į failą. Vykdant skripto failą įvykdomos jame esančios komandos. Bus kalbama, kaip sukurti

Detaliau

DB sukūrimas ir užpildymas duomenimis

DB sukūrimas ir užpildymas duomenimis DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio

Detaliau

Dokumento Aplinkosauginių priemonių projektavimo, įdiegimo ir priežiūros rekomendacijos. Vandens telkinių apsauga APR- VTA 10 4 priedas VANDENS APSAUG

Dokumento Aplinkosauginių priemonių projektavimo, įdiegimo ir priežiūros rekomendacijos. Vandens telkinių apsauga APR- VTA 10 4 priedas VANDENS APSAUG Dokumento Aplinkosauginių priemonių projektavimo, įdiegimo ir priežiūros rekomendacijos. Vandens telkinių apsauga APR- VTA 10 4 priedas VANDENS APSAUGOS PRIEMONIŲ TAIKYMO REKOMENDACIJOS 1 lentelė. Apsaugos

Detaliau

Slide 1

Slide 1 Dalelių filtro metodo ir vizualios odometrijos taikymas BPO lokalizacijai 2014 2018 m. studijos Doktorantas: Rokas Jurevičius Vadovas: Virginijus Marcinkevičius Disertacijos tikslas ir objektas Disertacijos

Detaliau

SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS

SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS TURINYS KLUBO SĄNARIO 3D REKONSTRUKCIJA... 3 DUBENKAULIO 3D REKONSTRUKCIJA... 4 KELIO SĄNARIO 3D REKONSTRUKCIJA... 5 PETIES SĄNARIO 3D REKONSTRUKCIJA... 6 KAUKOLĖS

Detaliau

PowerPoint Presentation

PowerPoint Presentation Nacionalinio egzaminų centro projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas (kodas VP1-2.1-ŠMM-01-V-03-003) 1 seminaras Dalykinių

Detaliau

Honda GL1800 GOLD WING TOUR Gold Wing Tour Pasirodžius naujausiai legendinio Honda Gold Wing motociklo versijai šis neprilygstamas turistinis motocikl

Honda GL1800 GOLD WING TOUR Gold Wing Tour Pasirodžius naujausiai legendinio Honda Gold Wing motociklo versijai šis neprilygstamas turistinis motocikl Honda GL1800 GOLD WING TOUR Gold Wing Tour Pasirodžius naujausiai legendinio Honda Gold Wing motociklo versijai šis neprilygstamas turistinis motociklas tapo dar universalesnis. Galima sakyti, kad šis

Detaliau

Vigirdas Mackevičius 2. Sekos riba Paskaitu konspektas Intuityviai realiu ju skaičiu seka vadinama realiu ju skaičiu aibė, kurios elementai (vadinami

Vigirdas Mackevičius 2. Sekos riba Paskaitu konspektas Intuityviai realiu ju skaičiu seka vadinama realiu ju skaičiu aibė, kurios elementai (vadinami Vigirdas Mackevičius 2. Sekos riba Paskaitu kospektas Ituityviai realiu seka vadiama realiu aibė, kurios elemetai (vadiami sekos ariais) suumeruoti atūraliaisiais skaičiais (pradedat galbūt e vieetu, o

Detaliau

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius reikės pasitelkti kūrybinį mąstymą ir pasinaudoti jau turimomis žiniomis, įgytomis per

Detaliau

ECB rekomendacinio dokumento bankams apie neveiksnias paskolas priedas: prudencinis atidėjinių neveiksnioms pozicijoms dengti minimumas

ECB rekomendacinio dokumento bankams apie neveiksnias paskolas priedas: prudencinis atidėjinių neveiksnioms pozicijoms dengti minimumas ECB rekomendacinio dokumento bankams apie neveiksnias paskolas priedas: prudencinis atidėjinių neveiksnioms pozicijoms dengti minimumas 2017 m. spalio mėn. Turinys 1 Įvadas 2 2 Bendra koncepcija 3 2.1

Detaliau

KAUNO TECHNOLOGIJOS UNIVERSITETAS

KAUNO TECHNOLOGIJOS UNIVERSITETAS KAUNO TECHNOLOGIJOS UNIVERSITETAS PANEVĖŽIO INSTITUTAS TECHNOLOGIJŲ FAKULTETAS Gailius Vanagas ELEKTROSTATINIŲ KRŪVIŲ ANT DIELEKTRINIŲ PAVIRŠIŲ POVEIKIS ELEKTRONŲ PLUOŠTUI Elektros inžinerijos magistro

Detaliau

13/6 t. LT Europos Sąjungos oficialusis leidinys L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS TARYBOS DIREKTYVA 1979 m. gruodž

13/6 t. LT Europos Sąjungos oficialusis leidinys L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS TARYBOS DIREKTYVA 1979 m. gruodž 3 31980L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS 1980 2 15 TARYBOS DIREKTYVA 1979 m. gruodžio 20 d. dėl valstybių narių įstatymų, susijusių su matavimo vienetais, suderinimo ir Direktyvos 71/354/EEB

Detaliau

Microsoft PowerPoint - ikaitinti_kunai02.ppt

Microsoft PowerPoint - ikaitinti_kunai02.ppt Šviesos šaltiniai Nekoherentiniai šviesos šaltiniai. Šviesos šaltinių rūšys. Absoliučiai juodo kūno spinduliavimas. Kaitinimo lempos. Dujų išlydžio lempos. Šviestukų veikimo fizikiniai principai ir technologijos.

Detaliau

VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS KVANTINĖS ELEKTRONIKOS KATEDRA MOKOMOJI LAZERIŲ LABORATORIJA Laboratorinis darbas Nr. KE 2 Laisvos veikos ki

VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS KVANTINĖS ELEKTRONIKOS KATEDRA MOKOMOJI LAZERIŲ LABORATORIJA Laboratorinis darbas Nr. KE 2 Laisvos veikos ki VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS KVANTINĖS ELEKTRONIKOS KATEDRA MOKOMOJI LAZERIŲ LABORATORIJA Laboratorinis darbas Nr. KE 2 Laisvos veikos kietakūnio IAG:Nd lazerio tyrimas Metodiniai nurodymai

Detaliau

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluation of Random Search Optimization Algorithms Magistro

Detaliau

Microsoft Word - I_k_ST_PR-2006.doc

Microsoft Word - I_k_ST_PR-2006.doc Lietuvių kalbos egzamino programa Testu siekiama patikrinti raš ybos, skyrybos ir kalbos kultūros įgūdžius, žodžio dalių ir kalbos dalių mokė jimą, atidumą. Pastaba: skliausteliuose nurodomas vienas kitas

Detaliau

Tyrimu projektas

Tyrimu projektas Birutė Lisauskaitė (tyrėjo vardas, pavardė) Šv. Jono Nepomuko g. Nr. 132, Trakai, te. 8 620 12404, e-paštas elearai@takas.lt Kultūros paveldo departamentui prie Kultūros ministerijos (adresas pašto korespondencijai

Detaliau

PRIEINAMAS TURIZMAS-TURIZMAS VISIEMS UNIVERSALUS DIZAINAS: TEORIJA IR PRAKTIKA

PRIEINAMAS TURIZMAS-TURIZMAS VISIEMS  UNIVERSALUS DIZAINAS: TEORIJA IR PRAKTIKA PRIEINAMAS TURIZMAS-TURIZMAS VISIEMS UNIVERSALUS DIZAINAS: TEORIJA IR PRAKTIKA RAMUNĖ STAŠEVIČIŪTĖ ARCHITEKTĖ KU DOCENTĖ 2018.10.18, KLAIPĖDA UNIVERSALUS DIZAINAS TAI TOKS GAMINIŲ IR APLINKOS KŪRIMAS (PROJEKTAVIMAS),

Detaliau

Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tir

Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tir Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tiriant judėjimą, išreiškiamą priklausomybėmis tarp kintamųjų

Detaliau

Standartinių gamybinių operacijų brėžiniai, sutartiniai žymėjimai 1

Standartinių gamybinių operacijų brėžiniai, sutartiniai žymėjimai 1 Standartinių gamybinių operacijų brėžiniai, sutartiniai žymėjimai 1 TURINYS 1. Gręžimas lankstams: 1.1 2-iejų skylių gręžimas durelėms 80mm atstumu...3 1.2 2-iejų skylių gręžimas durelėms 100mm atstumu...5

Detaliau

1 1. PMĮ 5 straipsnio 2 dalies nauja redakcija 2. Vienetų, kuriuose vidutinis sąrašuose esančių darbuotojų skaičius neviršija 10 žmonių ir mokestinio

1 1. PMĮ 5 straipsnio 2 dalies nauja redakcija 2. Vienetų, kuriuose vidutinis sąrašuose esančių darbuotojų skaičius neviršija 10 žmonių ir mokestinio 1 1. PMĮ 5 straipsnio 2 dalies nauja redakcija 2. Vienetų, kuriuose vidutinis sąrašuose esančių darbuotojų skaičius neviršija 10 žmonių ir mokestinio laikotarpio pajamos neviršija 300 000 eurų, pirmojo

Detaliau

european-semester_thematic-factsheet_addressing-inequalities_lt.docx

european-semester_thematic-factsheet_addressing-inequalities_lt.docx EUROPOS SEMESTRO TEMINĖ INFORMACIJOS SUVESTINĖ NELYGYBĖS ŠALINIMAS 1. ĮVADAS Pastaraisiais metais paaštrėjo nelygybės problema. Ekonomikos krizė stipriai paveikė Europą ne vienus metus trukęs gyvenimo

Detaliau

Elektronu igreitejimo stipriame elektriniame lauke itaka fotolaidžios terahercu antenos savybems

Elektronu igreitejimo stipriame elektriniame lauke itaka fotolaidžios terahercu antenos savybems Elektronu igreitejimo stipriame elektriniame lauke itaka fotolaidºios terahercu antenos savybems Gediminas lekas 2019 05 07 VGTU Matematinio Modeliavimo Katedros seminaras 1 / 42 Padeka Podoktorant uros

Detaliau

Microsoft Word - SDH2.doc

Microsoft Word - SDH2.doc PATVIRTINTA AB Lietuvos geleţinkeliai Geleţinkelių infrastruktūros direkcijos direktoriaus 2009-11-30 įsakymu Nr. Į (DI-161) SDH SĄSAJOS TECHNINIS APRAŠAS TURINYS I. BENDROJI DALIS... 4 II. TAIKYMO SRITIS...

Detaliau

Microsoft Word - KLOM.doc

Microsoft Word - KLOM.doc Aptarnavimo instrukcija Valdymas ir duomenų vaizdavimas Pagrindinis jungiklis Pagrindinis jungiklis yra skirtas katilo įjungimui ar išjungimui. Jis yra katilo valdymo skydelyje (pozicija 6, pav. 1). Pirmąjį

Detaliau

PATVIRTINTA Lietuvos statistikos departamento generalinio direktoriaus ir Muitinės departamento prie Lietuvos Respublikos finansų ministerijos general

PATVIRTINTA Lietuvos statistikos departamento generalinio direktoriaus ir Muitinės departamento prie Lietuvos Respublikos finansų ministerijos general PATVIRTINTA Lietuvos statistikos departamento generalinio direktoriaus ir Muitinės departamento prie Lietuvos Respublikos finansų ministerijos generalinio direktoriaus 2014 m. spalio 30 d. įsakymu Nr.

Detaliau

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna

Detaliau

Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui

Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui LAKD TNT skyriaus vedėjas Evaldas Petrikas Reglamentavimas Automobilių kelių standartizuotų dangų konstrukcijų projektavimo taisyklės KPT

Detaliau

Microsoft Word - DBU programa ir planas.rtf

Microsoft Word - DBU programa ir planas.rtf PATVIRTINTA UAB Druskininkų butų ūkio direktoriaus 2017 m. balandžio mėn. 3 d. įsakymu Nr.22 UAB DRUSKININKŲ BUTŲ ŪKIO KORUPCIJOS PREVENCIJOS PROGRAMA 2017-2019 METAMS BENDROSIOS NUOSTATOS 1. UAB Druskininkų

Detaliau

Gabių vaikų ugdymo mokymo priemonių dokumentas parengtas, įgyvendinant ES lėšomis finansuojamą projektą Gabių vaikų ugdymo efekytyvumo didinimas šviet

Gabių vaikų ugdymo mokymo priemonių dokumentas parengtas, įgyvendinant ES lėšomis finansuojamą projektą Gabių vaikų ugdymo efekytyvumo didinimas šviet 61 rogramos 1.5 temos nalizuoti ir prognozuoti vartotojų reakciją į kainų pokytį, remiantis paklausos elastingumu kainoms, ir gamintojų reakciją į kainų pokytį, remiantis pasiūlos elastingumu kainoms raplėtimas

Detaliau

Printing triistr.wxmx

Printing triistr.wxmx triistr.wxmx / Triįstrižainių lygčių sistemų sprendimas A.Domarkas, VU, Teoriją žr. []; [], 7-7; []. Pradžioje naudosime Gauso algoritmą, kuriame po įstrižaine daromi nuliai. Po to grįždami į viršų virš

Detaliau

CL2013O0023LT _cp 1..1

CL2013O0023LT _cp 1..1 02013O0023 LT 01.09.2018 001.001 1 Šis tekstas yra skirtas tik informacijai ir teisinės galios neturi. Europos Sąjungos institucijos nėra teisiškai atsakingos už jo turinį. Autentiškos atitinkamų teisės

Detaliau

STATYTOJAS A. Zakaro firma IĮ STATINIO PROJEKTO PAVADINIMAS Inţinerinių statinių Klaipėdos m., Minijos g. 44 B rekonstravimo ir statybos projektas STA

STATYTOJAS A. Zakaro firma IĮ STATINIO PROJEKTO PAVADINIMAS Inţinerinių statinių Klaipėdos m., Minijos g. 44 B rekonstravimo ir statybos projektas STA STATYTOJAS A. Zakaro firma IĮ STATINIO PROJEKTO PAVADINIMAS Inţinerinių statinių Klaipėdos m., Minijos g. 44 B rekonstravimo ir statybos projektas STATYBOS RŪŠIS Statinio rekonstravimas STATINIO KATEGORIJA

Detaliau

5.3 TNL sistemos kaip selektyvûs daþniø filtrai

5.3 TNL sistemos kaip selektyvûs daþniø filtrai 7. Saitmeiiai filtrai 7.1. Tiesiės eitačios laie sistemos, aip seletyvieji dažių filtrai TNL sistema paeičia įėjimo sigalo spetrą X (ϖ ) pagal jos dažię reaciją H (ϖ ), ir gauamas išėjimo sigalas su spetru

Detaliau

1

1 KAUNO TECHNOLOGIJOS UNIVERSITETAS MATEMATIKOS IR GAMTOS MOKSLŲ FAKULTETAS MATEMATINIO MODELIAVIMO KATEDRA Mindaugas Bražėnas APROKSIMAVIMAS FAZINIAIS SKIRSTINIAIS BEI JŲ TAIKYMAS APTARNAVIMO SISTEMOMS

Detaliau

LIETUVOS RESPUBLIKOS AZARTINIŲ LOŠIMŲ ĮSTATYMO NR. IX-325 2, 10, 15, 16, 29 STRAIPSNIŲ PAKEITIMO IR ĮSTATYMO PAPILDYMO 15 1, 16 1 STRAIPSNIAIS ĮSTATYM

LIETUVOS RESPUBLIKOS AZARTINIŲ LOŠIMŲ ĮSTATYMO NR. IX-325 2, 10, 15, 16, 29 STRAIPSNIŲ PAKEITIMO IR ĮSTATYMO PAPILDYMO 15 1, 16 1 STRAIPSNIAIS ĮSTATYM LIETUVOS RESPUBLIKOS AZARTINIŲ LOŠIMŲ ĮSTATYMO NR. IX-325 2, 10, 15, 16, 29 STRAIPSNIŲ PAKEITIMO IR ĮSTATYMO PAPILDYMO 15 1, 16 1 STRAIPSNIAIS ĮSTATYMAS 2017 m. lapkričio 21 d. Nr. XIII-771 Vilnius 1 straipsnis.

Detaliau

Dažniausios IT VBE klaidos

Dažniausios IT VBE klaidos Dažniausios IT VBE klaidos Renata Burbaitė renata.burbaite@gmail.com Kauno technologijos universitetas, Panevėžio Juozo Balčikonio gimnazija 1 Egzamino matrica (iš informacinių technologijų brandos egzamino

Detaliau

Lietuvos mobiliojo ryšio operatorių 30Mbit/s zonų skaičiavimo metodika

Lietuvos mobiliojo ryšio operatorių 30Mbit/s zonų skaičiavimo metodika MOBILIOJO RYŠIO OPERATORIŲ 30 MB/S APRĖPTIES SKAIČIAVIMAI RRT atliktos analizės rezultatų viešas aptarimas, Susisiekimo ministerija 2015 10 19 Lietuvos respublikos ryšių reguliavimo tarnyba Direktoriaus

Detaliau

Hands-on exercise

Hands-on exercise Patvirtinamasis dokumentas 1 (4) 2017 m. gegužės 25 d. Praktinė užduotis Su sprendiniais 1 Turinys 1. Įvadas... 2 2. Instrukcijos... 2 2.1. Sutartiniai ženklai... 2 2.2. Užduoties etapai... 2 3. Užduoties

Detaliau

Individualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotoja

Individualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotoja Individualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotojams Alternatyvus valdymo pultas telefone ViPGaS programos

Detaliau

Bendrojo baigiamųjų projektų rengimo, gynimo ir saugojimo aprašo 1 priedas

Bendrojo baigiamųjų projektų rengimo, gynimo ir saugojimo aprašo 1 priedas KAUNO TECHNOLOGIJOS UNIVERSITETAS STATYBOS IR ARCHITEKTŪROS FAKULTETAS Tadas Lisauskas VERSLO CENTRO KAUNE STATYBINIŲ KONSTRUKCIJŲ DALIES PROJEKTAS Baigiamasis magistro projektas Vadovas Doc. dr. Mindaugas

Detaliau

LIETUVOS RESPUBLIKOS FINANSŲ MINISTRAS ĮSAKYMAS DĖL FINANSŲ MINISTRO 2014 M. GRUODŽIO 30 D. ĮSAKYMO NR. 1K-499 DĖL METŲ EUROPOS SĄJUNGOS FON

LIETUVOS RESPUBLIKOS FINANSŲ MINISTRAS ĮSAKYMAS DĖL FINANSŲ MINISTRO 2014 M. GRUODŽIO 30 D. ĮSAKYMO NR. 1K-499 DĖL METŲ EUROPOS SĄJUNGOS FON LIETUVOS RESPUBLIKOS FINANSŲ MINISTRAS ĮSAKYMAS DĖL FINANSŲ MINISTRO 2014 M. GRUODŽIO 30 D. ĮSAKYMO NR. 1K-499 DĖL 2014 2020 METŲ EUROPOS SĄJUNGOS FONDŲ INVESTICIJŲ VEIKSMŲ PROGRAMOS STEBĖSENOS RODIKLIŲ

Detaliau

Administravimo vadovas SAFTit Pro v3

Administravimo vadovas SAFTit Pro v3 SAF-T IT Pro programos administravimo vadovas Turinys 1. SQL užklausų modifikacija... 2 1.1. Užklausų katalogas ir kaip sukurti nestandartines užklausas... 2 1.2. Užklausų modifikavimas... 2 1.3. Specialieji

Detaliau

CIVILINĖS AVIACIJOS ADMINISTRACIJOS DIREKTORIUS Į S A K Y M A S DĖL MĖGĖJIŠKOS KONSTRUKCIJOS ORLAIVIŲ GAMYBOS, JŲ TINKAMUMO SKRAIDYTI NUSTATYMO IR NAU

CIVILINĖS AVIACIJOS ADMINISTRACIJOS DIREKTORIUS Į S A K Y M A S DĖL MĖGĖJIŠKOS KONSTRUKCIJOS ORLAIVIŲ GAMYBOS, JŲ TINKAMUMO SKRAIDYTI NUSTATYMO IR NAU CIVILINĖS AVIACIJOS ADMINISTRACIJOS DIREKTORIUS Į S A K Y M A S DĖL MĖGĖJIŠKOS KONSTRUKCIJOS ORLAIVIŲ GAMYBOS, JŲ TINKAMUMO SKRAIDYTI NUSTATYMO IR NAUDOJIMO TAISYKLIŲ 2001 m. gruodžio 27 d. Nr. 109 Vilnius

Detaliau

VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika (01P

VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika (01P VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika 0P) Vilnius, 207 Disertacija rengta 20-207 metais Vilniaus

Detaliau

Žirm n g , Vilnius Tel.: (8~5) ; Faks.: (8~5) Statytojas (užsakovas) Statinio projekto pavadinimas Statinio kategorija

Žirm n g , Vilnius Tel.: (8~5) ; Faks.: (8~5) Statytojas (užsakovas) Statinio projekto pavadinimas Statinio kategorija Žirm n g.9 -, 9 Vilnius Tel.: (8~5) 7 8 ; Faks.: (8~5) 8 Statytojas (užsakovas) Statinio projekto pavadinimas Statinio kategorija Statinio grup UAB ARGINTA INVESTMENT DIDMENIN S PREKYBOS PASTATO, NALŠIOS

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 2 paskaita 2019-02-13 Algoritmo sąvoka Algoritmas tai tam tikra veiksmų seka, kurią reikia atlikti norint gauti rezultatą. Įvesties duomenys ALGORITMAS Išvesties duomenys

Detaliau

Projektas LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIUS ĮSAKYMAS DĖL RADIJO RYŠIO PLĖTROS MHz RADIJO DAŽNIŲ JUOSTOJE PLANO PAT

Projektas LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIUS ĮSAKYMAS DĖL RADIJO RYŠIO PLĖTROS MHz RADIJO DAŽNIŲ JUOSTOJE PLANO PAT Projektas LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIUS ĮSAKYMAS DĖL RADIJO RYŠIO PLĖTROS 3400 3800 MHz RADIJO DAŽNIŲ JUOSTOJE PLANO PATVIRTINIMO 2019 m. d. Nr. 1V- Vilnius Vadovaudamasis

Detaliau

VĮ GIS-Centras Vilnius 2019 Palydovinių duomenų peržiūros ir analizės paslauga Naudotojo vadovas v.1

VĮ GIS-Centras Vilnius 2019 Palydovinių duomenų peržiūros ir analizės paslauga Naudotojo vadovas v.1 VĮ GIS-Centras Vilnius 2019 Palydovinių duomenų peržiūros ir analizės paslauga Naudotojo vadovas v.1 Turinys ĮŽANGA... 3 1. PALYDOVINIŲ DUOMENŲ PERŽIŪROS IR ANALIZĖS PASLAUGA... 4 1.1. Paslaugos apžvalga...

Detaliau