Realių lėktuvų skrydžių atvaizdavimas pagal turimus radaro duomenis

Dydis: px
Rodyti nuo puslapio:

Download "Realių lėktuvų skrydžių atvaizdavimas pagal turimus radaro duomenis"

Transkriptas

1 VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Lėktuvo trajektorijos vizualizavimas MATLAB sistemoje Aeroplane path visualization using MATALB system Kursinis darbas Atliko: 3 kurso, 2 grupės studentas Domantas Nuobara (parašas) Darbo vadovas: doc. Kristina Lapin (parašas) Vilnius

2 Turinys Įvadas Virtualaus pasaulio pritaikymas Pescaros oro uostui SKY-Scanner projektas Sukruto virtualaus pasaulio nagrinėjimas Skrydţių trajektorijų vaizdavimas virtualiame pasaulyje Idealios trajektorijos atvaizdavimas Ovalų koordinačių nustatymas Iškilusi problema su ovalų koordinatėmis MATLAB ir VRML suderinamumas MATLAB ir VRML koordinačių sistemos Skrydţių trajektorijų koordinačių keitimas Lėktuvų skrydţių trajektorijų vaizdavimas virtualiame pasaulyje Trajektorijų atvaizdavimas Skrydţių trajektorijų koordinatės Lėktuvo sukimas virtualioje erdvėje Lėktuvo pasukimo kampo nustatymas Lėktuvo pasukimo kampo apskaičiavimas Išvados Naudotų šaltinių sąrašas Priedai

3 Įvadas Pasirodţius naujiems matavimo prietaisams - lidarams (LIDARs Light Detection And Ranging systems) atsirado galimybė matavimus atlikti daug tiksliau negu naudojant radarus. Projekte SKY-Scanner yra siekiama sukurti sistemą, padedančią oro uosto dispečeriui priimti sprendimą. Nors lidarų išmatuoti duomenys yra šimtus kartų tikslesni nei radarų duomenys, tačiau jie matavimus atlieka tik tuomet kai yra tiksliai nutaikyti į objektą. Be to, esant blogoms oro sąlygomis (pvz.: rūkui, lyjant lietui ar sningant) lidarai neveikia, todėl juos galima naudoti tik kaip pagalbinę priemonę tikslinant lėktuvo padėtį, kai radaras jau yra uţfiksavęs kurioje padėtyje yra lėktuvas. Sistema turi būti tokia, kad jai pateikus lidarų ir radarų duomenis, išvestyje būtų galimos rizikingos situacijos tikimybė bei patikslinta lėktuvo padėtis. Italijoje, Pescaros mieste yra oro uostas, kuriam kuriama sprendimų priėmimo sistema SKY-Scanner. Siekiant stebėti skrydţius, išanalizuoti jų duomenis, numatyti galimas problemas, reikia tam tikro būdo skrydţiams atvaizduoti. Suprantamiausias ir realistiškiausias būdas atvaizduoti lėktuvo skrydį naudojant virtualią aplinką. Šio darbo tikslas sukurti virtualią aplinką (virtualų pasaulį), kurioje, pagal pateiktus skrydţių duomenis koordinates, vaizduojami įvykę skrydţiai ir būtų galima nustatyti ar lėktuvas skrenda nenukrypdamas nuo nustatytos skrydţio trajektorijos. 3

4 1. Virtualaus pasaulio pritaikymas Pescaros oro uostui 1.1. SKY-Scanner projektas Šis projektas vykdomas ne pirmus metus dalis jo jau padaryta ir yra plėtojama. Sprendimo priėmimo sistema yra kuriama Pescaros oro uostui, tačiau nėra pateikta jokių šio oro uosto radarų uţfiksuotų duomenų. Tam, kad projekto dalyviai galėtų sukurti tokią sistemą reikalingi duomenys, su kuriais būtų galima atlikti testavimus. Todėl buvo pateikti kito Italijos oro uosto Neapolio, radarų uţfiksuoti duomenys, kuriais remiantis buvo sukurta prototipinė sistema Neapolio oro uostui. Toliau vykdant projektą prototipas yra perdaromas ir tobulinamas taip, kad tiktų Pescaros oro uostui. Taigi autoriui tenkanti uţduotis yra ne sukurti virtualų pasaulį iš naujo, o esantį Neapolio oro uosto prototipą pakeisti ir pritaikyti Pescaros oro uostui Sukruto virtualaus pasaulio nagrinėjimas Neapolio oro uosto prototipą kūrė Gediminas Šumskas. Neţinant kokiomis priemonėmis, kas ir kokiu tikslu yra sukurta, būtų neįmanoma to darbo pratęsti ir tobulinti. Taigi visų pirma reikėjo detaliai išsianalizuoti ir išsiaiškinti kaip buvo kuriamas Neapolio oro uosto virtuali aplinka. Perskaičius Gedimino Šumsko kursinį darbą [1 priedas] buvo aišku, kad tinkamiausias įrankis kurti virtualiam pasauliui yra 3ds MAX modeliavimui skirta programa. Įgauti pradinių ţinių apie darbą šiuo įrankiu padėjo jame esantys vaizdo įrašai, skirti susipaţinti su pagrindinėmis programos funkcijomis. Tokiu būdu buvo išanalizuotas sukurtas virtualus pasaulis, jame esantys objektai ir suţinota, kad lėktuvų skrydţių vizualizavimas atliekamas ne 3ds MAX pagalba, o naudojantis MATLAB programine įranga Skrydžių trajektorijų vaizdavimas virtualiame pasaulyje Pescaros, kaip ir Neapolio, oro uoste lėktuvai leidţiasi tik iš vienos nusileidimo tako pusės. Kiekviename oro uoste yra vietą, kurią pasiekęs lėktuvas skrenda tiesiai, maţindamas skrydţio aukštį ir greitį atlieką nusileidimą. Norint ţinoti ar nusileidimas vyksta pagal nustatytus standartus, virtualiame pasaulyje yra išdėstomi ovalai, pro kuriuos turi praskristi lėktuvas, jei nėra nukrypimų nuo trajektorijos. MATLAB sistemai parašyta programa, kuriai pateikus skrydţio trajektorijos bei ovalų koordinates, atlieka skrydţio vizualizaciją. Programa naudoja sukurtą virtualų pasaulį 3ds MAX modeliavimo įrankiu yra sukurtas virtualus trimatis pasaulis, vaizduojantis Pescaros oro uostą iš viršaus, taip pat jame yra sukurtas trimatis lėktuvo objektas bei ovalai ir išsaugotas WRL formatu. Šiuo formatu saugomas VRML (Virtual Reality Modelling Language) kodas, kurį supranta MATLAB sistema. MATLAB sistemoje atliekamas 4

5 šio virtualaus pasaulio vaizdavimas ir pagal pateiktas koordinates keičiama lėktuvo padėtis virtualioje erdvėje nustatomos naujos lėktuvo pozicijos koordinatės ir atnaujinamas virtualus pasaulis, kur lėktuvas jau kitoje pozicijoje. Tai vyksta pakankamai greitai, priklauso nuo kompiuterio vykdančio programą galingumą, todėl yra nurodomas parametras p, kuris reiškia kokią sekundės dalį reikia uţlaikyti vaizdą, prieš atnaujinat lėktuvo padėtį, t.y. jeigu parametras p yra labai maţas, o programą vykdantis kompiuteris greitas, tuomet skrydis gali būti atvaizduojamas labai greitai ir ţmogus nespėtų pamatyti visos trajektorijos, todėl, parenkant tinkamą uţlaikymą, skrydis atvaizduojamas norimu greičiu Idealios trajektorijos atvaizdavimas Vienas pagrindinių projekto tikslų yra skrydţių nuokrypių vaizdavimas. Pescaros oro uosto brėţiniuose [2 naudotas šaltinis] yra paţymėtas taškas FAF (Final Aproach Fix), kuris pasako kokiomis aplinkybėmis lėktuvas turi leistis yra nustatyta, kad lėktuvas turi būti 2000 pėdų aukštyje, esant 7 jūrmylių atstumui iki nusileidimo tako ir turi leistis 4,8% nuoţulnumo kampu. Šį tašką privalo pasiekti visi atskrendantys lėktuvai ir praskridę FAF būtinai turi leistis. Taip pat, World Areo Data internetinėje svetainėje pateikti nusileidimo tako duomenys, išsiaiškinta, kad Pescaros nusileidimo takas yra pasuktas 218 laipsnių kampu. Taigi dabar ţinomi visi reikalingi duomenys, norint išdėstyti ovalus, į kuriuos telpa lėktuvas ir kurie sudaro tarsi tunelį, vaizduojantį idealią nusileidimo trajektoriją nuo taško FAF. 1 pav. Ovalai, pro kurios skrenda lėktuvas 1.5. Ovalų koordinačių nustatymas Virtualiame pasaulyje ovalai išdėstomi statiškai sukuriant virtualų pasaulį MATLAB aplinkoje. Todėl turime ţinote taškų, kuriuose turi būti ovalai, koordinates. Jų apskaičiavimui Gedimino Šumsko kursiniame darbe buvo parašyta programa, kuriai pateikus nuolydţio ir nusileidimo tako kampus, kaip pradinius duomenis, gaunamos taškų koordinatės. Be to, galima 5

6 pasirinkti kas kokį atstumą ir kiek ovalų norime turėti. Kadangi yra ţinoma, kad taškas FAF yra 7 jūrmylių atstumu, o mūsų naudojamos 64 koordinatės prilygsta vienai jūrmylei, gauname atkarpos, kurioje turi būti ovalai, ilgį lygų 448. Tarkime, kad norime išdėstyti 20 ovalų, tai atstumas tarp jų turi būtų apie 22. Įvedę į programą tokius parametrus, gauname taškų, kuriuose turi būti ovalai, koordinates Iškilusi problema su ovalų koordinatėmis Sudėliojus ovalus, pagal sugeneruotas koordinates, buvo pastebėta, kad ovalų sudaromo tunelio kryptis nesutampa su nusileidimo taku, t.y. pasukta kitu kampu. Padaryta išvada, kad sugeneruojamos koordinatės yra nekorektiškos. Panagrinėjus programos, parašytos c# kalba, kodą ir pagilinus c# programavimo kalbos ţinias, nustatyta, kad nusileidimo tako pasukimo kampą reikia pateikti radianais, o ne laipsniais. Pakoregavus programą (2 priedas) buvo sugeneruotos tinkamas nusileidimo takui ovalų koordinatės. 6

7 2. MATLAB ir VRML suderinamumas 2.1. MATLAB ir VRML koordinačių sistemos Atliekant skrydţių trajektorijų atvaizdavimo testavimus sukurtame pasaulyje buvo pastebėta, kad nusileidimo tako kryptis nesutampa su kryptimi, kuria leidţiasi lėktuvai. Daugiau pasidomėjus apie VRML paaiškėjo, kad šis formatas naudoja šiek tiek kitokią koordinačių sistemą. 2 pav. MATLAB ir VRML koordinatės Kaip matosi iš [2 pav. MATLAB ir VRML koordinatės] VRML koordinačių sistemoje Y ašis sukeista su Z ašimi ir dar Z ašies kryptis yra pakeista. Trimatėje erdvėje aukščiu atvaizduoti uţtenka sukeisti Y ir Z ašis, tuomet jokių problemų neiškyla, todėl nagrinėkime tik dvimates koordinačių sistemas. 3 pav. Vektoriaus atvaizdavimas įprastoje ir VRML koordinačių sistemose 7

8 Nusileidimo tako centro koordinatės yra 6012; -3422, jis pasuktas tam tikru kampu. Nusileidimo takas pavaizduotas vektoriumi, kurio kryptis rodo į kurią pusę leidţiasi lėktuvai. Paveikslėlyje [3 pav. Vektoriaus atvaizdavimas įprastoje ir VRML koordinačių sistemose] atveju a) matome kaip sumodeliuojame virtualų pasaulį 3ds MAX modeliavimo įrankiu, ir išsaugoję WRL formatu, gauname b) modelį. Kadangi modeliuojant ir išsaugant WRL formatu pat koordinačių plokštuma nekinta, keičiasi tik ţymėjimas ant koordinačių ašių, todėl a) nusileidimo tako centro koordinatės yra 6012; 3422, o išsaugojus WRL formatu nusileidimo tako centro koordinatės tokios, kokios buvo nustatytos (6012; -3422). Be to, modeliuojant objektus yra 2.2. Skrydžių trajektorijų koordinačių keitimas Tarkime skrydţio trajektorija yra tokia: D->C->B->A (iš taško D skrenda į tašką A, per taškus C ir B). Paprastoje koordinačių sistemoje toks skrydis atrodytų kaip [4 pav. Trajektorijos vaizdavimas įprastoje ir VRML koordinačių sistemose] a) variantas, bet sukurtas pasaulis yra VRML standarto, kuriame naudojama kitokia koordinačių sistema, todėl skrydis iš taško D į tašką A atvaizduojamas b) paveiksle. Akivaizdţiai matos simetrija X ašies atţvilgiu. Todėl reikia modifikuoti skrydţio trajektorijos koordinates. 4 pav. Trajektorijos vaizdavimas įprastoje ir VRML koordinačių sistemose Pirmuoju atveju lėktuvo trajektorija yra teisinga ir jis tariamai leidţiasi į nusileidimo taką, jei BA vektorių laikysime nusileidimo taku. Antruoju atveju nusileidimo takas lyg pasuktas - 90º laipsnių kampu. Todėl buvo mėginama visą virtualų pasaulį pasukti -90º laipsnių kampu, ir taip skrydţio trajektorija turėtų sutapti su nusileidimo taku, bet iškilo tokia problema, kad trajektorija tapo simetriška nusileidimo tako centrui. Taigi, problemos sprendimas buvo ne sukti visą pasaulį kampu, o trajektoriją vaizduoti simetriškai nusileidimo takui. Paveiksle [4 pav. Trajektorijos vaizdavimas įprastoje ir VRML koordinačių sistemose] a) raudonai 8

9 pavaizduota modifikuota nusileidimo trajektorija D ->C ->B ->A. Šiame pavyzdyje nusileidimo tako centro koordinatės yra (6; -3), kiekvienas trajektorijos taško keičiama tik Y koordinatė: nauja Y reikšmė gaunama iš dvigubos nusileidimo tako Y reikšmės atėmus seną Y reikšmę, t.y. šiuo atveju A taško koordinatė Y nauja 2*( 3) ( 4) Tokiu būdu pakeitus kiekvieno trajektorijos taško y koordinatę, gaunama nauja trajektorija, kurią VRML atvaizduoja taip pat [4 pav. Trajektorijos vaizdavimas įprastoje ir VRML koordinačių sistemose] (raudona trajektorija b) dalyje), kaip ji buvo atvaizduojama prieš modifikavimą a) dalyje. Taigi suderinamumo problemos sprendimas yra surastas reikia modifikuoti trajektorijų koordinates, o ne sukti virtualų pasaulį. Trajektorijų koordinačių modifikavimas atliekamas MATLAB programoje [5 pav. Koordinačių pakeitimas]. Nusileidimo tako centro Y koordinatė yra -3422, todėl modifikuojant trajektorijos koordinates reikia iš dvigubos nusileidimo tako centro Y koordinatės atimti trajektorijos Y koordinatę, t.y Y(i). Programoje atimama z koordinatė, nes ten Y reiškia aukštį, o Z platumą. 5 pav. Koordinačių pakeitimas 9

10 3. Lėktuvų skrydžių trajektorijų vaizdavimas virtualiame pasaulyje 3.1. Trajektorijų atvaizdavimas Virtualus skrydţių trajektorijų atvaizdavimas MATLAB aplinkoje atliekamas transformacijų principu. Keisdami virtualaus pasaulio objekto, lėktuvo, koordinates, keičiami ir jo padėtį virtualioje erdvėje. Koordinatės pateikiamos faile, kurį nuskaito programa ir pagal jas transformuoja lėktuvo objekto padėtį Skrydžių trajektorijų koordinatės Kadangi nėra Pescaros oro uosto radarų uţfiksuotų duomenų, projekto dalyviams teko patiems sugeneruoti tariamų skrydţių koordinates, kurias būtų galima panaudoti atliekant testavimus. Šią uţduotį SKY-Scanner projekte vienam dalyviui, kuris pagal Pescaros oro uosto nusileidimo procedūras sugeneravo skrydţių be nukrypimų trajektorijų koordinates. Sugeneruoti duomenys išsaugoti viename faile, nurodant kuriuo laiko momentu, kokio skrydţio lėktuvas buvo tam tikroje pozicijoje. Problema buvo tame, kad pateikti duomenys nebuvo skirti šiam virtualiam pasauliui. Šio kursinio darbo metu kuriamoje programoje vienu metu atvaizduojamas tik vienas skrydis, todėl programai pateikti reikia taip pat tik vieno skrydţio trajektorijos koordinates. Taigi iš pateikto kelių skrydţių duomenų failo reikėjo išskirti atskirus skrydţius ir jų koordinates. Be to, sugeneruotų koordinačių vienetai atitiko jūrmyles, o sukurtame virtualiame pasaulyje vieną jūrmylę atitinka 64 koordinatės. Vadinasi, sugeneruotų koordinačių failas negalėjo būti tiesiogiai pateikiamas programai, reikėjo prieš tai duomenis apdoroti ir sutvarkyti taip, kad atitiktų programos reikalavimus. Mėginti pačiam išrinkti kiekvieno atskiro skrydţio koordinates, jas padauginti ir ranka surašyti atskiruose failuose uţimtų nemaţai laiko bei atsirastų didelė tikimybė privelti klaidų, kadangi yra skrydţių trajektorijų sudarytų net iš daugiau nei 650 taškų. Šio kursinio darbo autorius, norėdamas sutaupyti laiko ir išvengti klaidų, parašė programą JAVA programavimo kalba, kuriai pateikus sugeneruotų duomenų failą, duomenys apdorojami, išrenkami atskiri skrydţiai ir jų koordinatės uţrašomos atskiruose failuose. Tokiu būdų gauta 12 failų su atskirų skrydţių trajektorijų koordinatėmis Lėktuvo sukimas virtualioje erdvėje Lėktuvas yra tiesiog virtualaus pasaulio objektas, kuris juda MATLAB aplinkoje veikiančiame pasaulyje transformuojant jo pozicijos koordinates. Tačiau lėktuvo judėjimas yra ganėtinai statiškas, t.y. jis kaip objektas yra pasuktas tam tikru kampu ir transformuojant tik jo 10

11 koordinates lėktuvas lieka pasuktas tuo pačiu kampu, nesvarbu kuria kryptimi vyksta judėjimas. Siekiant, kad skrydţio atvaizdavimas atrodytų realistiškiau nutarta padaryti, kad vaizduojant skrydţio trajektoriją lėktuvo priekis visada būtų nukreiptas judėjimo kryptimi, kitaip tariant, lėktuvas suktųsi pagal skrydţio kryptį. Norint tai padaryti, reikia transformuoti ne tik lėktuvo padėtį virtualioje erdvėje, bet ir pasukti jį kaip objektą z ašimi (prisiminkime, kad VRML skirtingai atvaizduoja koordinačių ašis) tam tikru kampu Lėktuvo pasukimo kampo nustatymas Pirminiame variante buvo bandoma nustatyti pasukimo kampą imant du trajektorijos taškus, juos sujungiant gauname vektorių. Ţinant vektoriaus kryptį, galime nustatyti kokį kampą jis sudaro su x ašimi. Kadangi testavimo trajektorijų koordinatės yra ţinomos iš anksto, tai vektorius gaunamas imant dabartinės lėktuvo pozicijos taško koordinates ir sekančio taško koordinates. Tačiau koordinatės yra fiksuojamas radarų, o kaip ţinoma, radarai nėra labai tikslūs. Nors lėktuvo trajektorija yra beveik tiesi linija, bet koordinačių taškai yra šiek tiek nukrypę į vieną ar kitą pusę, todėl vektorių kryptys irgi yra nukreiptos šiek tiek į šonus [6 pav. Kryptis į kiekvieną tašką]. Atvaizduojant tokiu būdų apskaičiuotus pasukimo kampus lėktuvas skrisdamas tiesiai smarkiai sukiojosi į šonus. Taigi, norint išspręsti šią problemą ir sumaţinti bereikalingą lėktuvo sukiojimąsi į šonus, buvo nutarta lėktuvo priekį kreipti ne į sekantį trajektorijos tašką, o į tašką esanti uţ 3 taškų nuo dabartinio [7 pav. Kryptis į trečia tašką ]. 7 pav. Kryptis į trečia tašką 6 pav. Kryptis į kiekvieną tašką Kaip matosi iš Error! Reference source not found. ir Error! Reference source not found., antruoju atveju trajektorija tiesesnė, nes pasukimo kampas nustatomas iš vektoriaus AD, o ne sukiojama keletą kartų, kaip pirmuoju atveju. Be to, buvo dirbama su iš anksto ţinomomis skrydţio trajektorijos koordinatėmis, o realiame pasaulyje mes radaras pastoviai fiksuoja dabartinės lėktuvo pozicijos koordinates ir negalime tiksliai ţinoti, kokiame taške lėktuvas bus po kelių sekundţių, tą galime tik numatyti, tačiau čia jau visai kita SKY-Scanner projekto uţduotis. Todėl buvo nuspręsta lėktuvo pasukimo kampą skaičiuoti ţiūrint ne į tašką esantį uţ kelių taškų į priekį, bet atsiţvelgiant į dabartinį tašką ir 11

12 kokiame taške buvo prieš tai buvo prieš tai. Jei anksčiau lėktuvas būdavo taške A ir vektorių brėţėm į sekantį tašką D [6 pav. Kryptis į kiekvieną tašką] ir pagal tai nustatėme kokiu kampu turi būti pasisukęs, tai dabar traktuojame, kad lėktuvas jau yra taško D pozicijoje ir jame turi būti pasisukęs kampu, kurį sudaro vektorius AD su x ašimi [7 pav. Kryptis į trečia tašką] Lėktuvo pasukimo kampo apskaičiavimas yb ya Pasukimo kampas visada skaičiuojamas arktangentu, tokia formule: arctan( ) x x galimos kelios lėktuvo skrydţio kryptis, todėl gautą kampą gali reikėti modifikuoti. B A. yra 8 pav. Skrydimo kryptys Virtualiame pasaulyje lėktuvo modelis yra nukreiptas į vakaras, t.y. lėktuvo priekis ţiūri X ašies kryptimi. Tarkime lėktuvas skrenda iš taško A į tašką B [8 pav. Skrydimo kryptys. Pagal formulę, kampas atitinka CAB ir DBA kampus. Reikia atkreipti dėmesį į tai, kad a) atveju kampas visada gaunasi neigiamas, todėl lėktuvą uţtenka pasukti kampu, kuris yra neigiamas, ir jo kryptis sutampa su vektoriaus AB kryptimi. Atveju b) kampas todėl lėktuvą uţtenka pasukti tik kampu. Šie abu atvejai yra tuomet, kai xb x A. visada gaunasi teigiamas, 9 pav. Skrydimo kryptys 12

13 Kitu atveju, kai xb x A [Error! Reference source not found., kampas apskaičiavus a) gaunasi neigiamas, o b) teigiamas. Pasukus tokiu kampu lėktuvo priekis yra nukreiptas į kitą pusę nei vektoriaus AB, todėl prie kampo sutampa. reikia pridėti 180º, tuomet lėktuvo ir vektoriaus kryptys Dar galimi ir tokie atvejai kai trajektorijos taškų x arba z koordinatės yra lygios. Esant tokiai situacijai, lėktuvas skrenda arba x, arba y ašies kryptimi. Lėktuvo pasukimo kampo skaičiavimo programoje [10 pav. Lėktuvo pasukimo kampo skaičiavimo programos kodas] yra įtrauktos tokios sąlygos. 10 pav. Lėktuvo pasukimo kampo skaičiavimo programos kodas Kadangi kampas visada skaičiuojamas pagal x ašį, tai darant vis kitą lėktuvo pasukimą, reikia iš pradţių jį atsukti į pradinę padėti. Todėl yra įsimenamas kiekvienas pasukimas, programoje kintamasis rob. Kintamasis rot yra apskaičiuotas kampas. Paveiksle paţymėta I sąlyga, kai skrydţio trajektorijos taškų x koordinatės sutampa, o dabartinio taško y koordinatė yra didesnė uţ prieš tai buvusio taško y koordinatę, vadinasi lėktuvas skrido tiesiai į šiaurę, todėl turi būti pasuktas -90º kampu, kad skrydimo kryptis sutaptų su lėktuvo kryptimi. Ţenklu II paţymėta sąlyga, kai x koordinatės sutapo, o dabartinio taško y koordinatė maţesnė uţ prieš tai buvusio taško y koordinatę, t.y. lėktuvas skrido pietų kryptimi, todėl lėktuvo objektą reikia pasukti 90º kampu. Situacijai kai trajektorijos taškų y koordinatės yra lygios (lėktuvas skrenda į rytus arba vakarus) atskirai nagrinėti nereikia, kadangi skrydţio kryptis priklausytų nuo dabartinio ir prieš tai buvusio taško x koordinačių reikšmių, o tai programoje jau yra aprašyta. 13

14 Išvados Dalyvaujant SKY-Scanner projekte buvo įgyvendintas šio kursinio darbo tikslas - sukurti virtualią Pescaros oro uosto erdvę, skirta vaizduoti lėktuvų trajektorijoms. Sukurtas virtualus pasaulis realistiškai vaizduoja buvusius skrydţius, kadangi yra sudėti ovalai, rodantys tikslia nusileidimo trajektoriją, galime aiškiai matyti ar lėktuvas skrenda teisinga trajektorija ar yra nukrypimų nuo trajektorijos. Taigi tai padeda analizuoti skrydţio duomenis, nagrinėjant jų trajektorijas. Šio kursinio darbo įgyvendinimas reikalo įdiegti koordinačių sistemų suderinamumą tarp VRML ir MATLAB ir išsiaiškinti kaip atrodo VRML koordinačių sistema. Padirbėjus su MATLAB tapo aišku, jog tai puikus įrankis atlikti virtualaus pasaulio vizualizacijoms kai reikia atlikinėti sudėtingus ar paprastus matematinius skaičiavimus ir atlikti tiriamuosius darbus. Naudojant MATLAB būtų labai sunku sukurti galingą ir našų produktą, kadangi ji skirta primityvioms virtualaus pasaulio simuliacijoms ir norint paleisti detalesnius virtualaus pasaulio objektus reikia galingesnio kompiuterio, nes MATLAB reikalauja nemaţai kompiuterio resursų. 14

15 Naudotų šaltinių sąrašas 1. Gedimino Šumsko kursinis darbas Trimačių aplinkų kūrimo priemonės 2. Pescaros oro uosto eismą reguliuojančios diagramos 3. Pescaros oro uosto nusileidimo tako duomenys 4. VRML ir MATLAB koordinačių sistemos 15

16 Priedai 1 priedas. Trajektorijų koordinačių atskyrimo programa public void convert(){ //Procedūra atliekanti visą darbą try{ FileInputStream fstream = new FileInputStream("C:\\visi.csv"); //Nurodomas duomenų failas DataInputStream in = new DataInputStream(fstream); BufferedReader br = new BufferedReader(new InputStreamReader(in)); String strline, procedure, coords; while ((strline = br.readline())!= null){ //Nuskaitome po eilutę iš duomenų failo procedure = strline.substring(0, 10); //Paima skrydžio pavadinimą coords = strline.substring(strline.indexof(";;;;;;;")+7); //Paima skrydžio koordinates addto(procedure,coords); //Su pavadinimu ir koordinatėmis kreipiasi į procedūrą addto in.close(); catch (Exception e){ System.err.println("Error: " + e.getmessage()); makefile(x1, y1, z1, "ILS_S_49"); //----- Sukūriami failai koordinatėms įrašyti -----// makefile(x2, y2, z2, "ILS_P"); makefile(x3, y3, z3, "ILS_S_59"); makefile(x4, y4, z4, "ILS_STRA"); makefile(x5, y5, z5, "VORD_P"); makefile(x6, y6, z6, "VORD_S51"); makefile(x7, y7, z7, "VORD_S63"); makefile(x8, y8, z8, "VORD_STR"); makefile(x9, y9, z9, "VOR_P"); makefile(x10, y10, z10, "VOR_S_51"); makefile(x11, y11, z11, "VOR_S_63"); makefile(x12, y11, z12, "VOR_STRA"); //----- Sukūriami failai koordinatėms įrašyti -----// private void addto (String procedure, String coords){ /* * Procedūra pagal pateiktą skrydžio pavadinimą nustato * į kurį failą įrašyti koordinates, radus tinkamą failą * kreipaisi į kitą procedūrą, kuri įrašo duomenis į tam * tikro skrydžio koordinačių masyvą */ if (procedure.compareto((char)34+"ils_s_49"+(char)34) == 0){ add(x1, y1, z1, coords); else if (procedure.compareto((char)34+"ils-p "+(char)34) == 0){ add(x2, y2, z2, coords); else if (procedure.compareto((char)34+"ils-s-59"+(char)34) == 0){ add(x3, y3, z3, coords); else if (procedure.compareto((char)34+"ils-stra"+(char)34) == 0){ add(x4, y4, z4, coords); else if (procedure.compareto((char)34+"vord-p "+(char)34) == 0){ add(x5, y5, z5, coords); else if (procedure.compareto((char)34+"vord-s51"+(char)34) == 0){ add(x6, y6, z6, coords); else if (procedure.compareto((char)34+"vord-s63"+(char)34) == 0){ add(x7, y7, z7, coords); else if (procedure.compareto((char)34+"vord-str"+(char)34) == 0){ add(x8, y8, z8, coords); else if (procedure.compareto((char)34+"vor-p "+(char)34) == 0){ add(x9, y9, z9, coords); else if (procedure.compareto((char)34+"vor-s-51"+(char)34) == 0){ add(x10, y10, z10, coords); else if (procedure.compareto((char)34+"vor-s-63"+(char)34) == 0){ add(x11, y11, z11, coords); else if (procedure.compareto((char)34+"vor-stra"+(char)34) == 0){ 16

17 add(x12, y12, z12, coords); else System.out.println("Procedure not found!!"); private void add (ArrayList<String> x, ArrayList<String> y, ArrayList<String> z, String coords){ /* * Procedūrai pateikiami masyvai ir * skrydžio koordinatės. Atskiria x, y, z * koordinates ir įrašo į masyvus */ x.add(coords.substring(0, coords.indexof(';'))); coords = coords.substring(coords.indexof(';')+1); y.add(coords.substring(0, coords.indexof(';'))); coords = coords.substring(coords.indexof(';')+1); z.add(coords.substring(0, coords.indexof(';'))); private void makefile(arraylist<string> x, ArrayList<String> y, ArrayList<String> z, String name){ /* * Procedūrai paduodamas koordinačių * masyvas ir skrydžio pavadinimas. * Sukūriamas failas, tokių pavadinimu * ir į jį surašomos koordinatės tam tikru * formatu, kurio reikia MATLAB programai. */ Iterator<String> itr; double dbl; try{ FileWriter fstream = new FileWriter(name + ".m"); BufferedWriter out = new BufferedWriter(fstream); out.write("x1 = [\n"); itr = x.iterator(); while (itr.hasnext()) { String element = itr.next(); dbl = Double.parseDouble(element) * 64; element = Integer.toString((int)dbl); out.write(element + "\n"); out.write("];\n"); out.write("z1 = [\n"); itr = y.iterator(); while (itr.hasnext()) { String element = itr.next(); dbl = Double.parseDouble(element) * 64; element = Integer.toString((int)dbl); out.write(element + "\n"); out.write("];\n"); out.write("y1 = [\n"); itr = z.iterator(); while (itr.hasnext()) { String element = itr.next(); dbl = Double.parseDouble(element) / 100; element = Integer.toString((int)dbl); out.write(element + "\n"); out.write("];\n"); out.close(); catch (Exception e){ System.err.println("Error: " + e.getmessage()); 2 priedas. Ovalų koordinačių skaičiavimo programa public static void run() { double alfa = 232; while (alfa >= 180) alfa = alfa - 180; alfa = Math.PI * alfa /180; //laipsniais ne radianais double h_proc = 4.8; // nuolydis procentais StreamWriter sw = new StreamWriter(@"C:\fly_plan.csv"); // sukuriamas failas, kur bus įkeltos koordinatės Console.WriteLine("Kas kiek išvesti?"); // kas kokį intervalą kurti koordinates 17

18 int periodas = Convert.ToInt32(Console.ReadLine()); Console.WriteLine("Kiek kartų išvesti?"); // kiek kartų skaičiuoti koordinates int kartai = Convert.ToInt32(Console.ReadLine()); int l = 0; for (int i = 0; i < kartai; i++) { l = l + periodas; double y = (int)( Math.Sin(alfa) * l); // -3422; 6012 oro uosto koordinatės double x = (int)( Math.Cos(alfa) * l); double h = (int)(l / 100 * h_proc); sw.writeline(x + "; " + y + "; " + h + ";"); sw.close(); 18

Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis

Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis Klaidų apdorojimas C kalboje If (kazkokia_salyga) { klaidos_apdorojimas(); return... } Tokio kodo apimtis galėdavo sekti iki 70-80proc. Klaidų/išimčių

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje

Detaliau

Microsoft Word - 15_paskaita.doc

Microsoft Word - 15_paskaita.doc 15 PASKAITA Turinys: Išimtys Išimtys (exceptions) programos vykdymo metu kylančios klaidingos situacijos, nutraukiančios programos darbą (pavyzdžiui, dalyba iš nulio, klaida atveriant duomenų failą, indekso

Detaliau

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra

Detaliau

Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ

Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #include main() int mas[100]; int k; for (int

Detaliau

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai MATLAB komandų seka, vadinama programa, įrašyta į failą. Vykdant skripto failą įvykdomos jame esančios komandos. Bus kalbama, kaip sukurti

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to

Detaliau

Microsoft PowerPoint - IOSrautai.ppt

Microsoft PowerPoint - IOSrautai.ppt I/O - srautai OP2, ver. 2009-11-25. Paruošė: R.Vaicekauskas Turinys Srauto abstrakcija Javoje Bazinių klasių ypatybės Specializuoti srautai Srautai-filtrai. Dekoratoriaus šablonas. Objektų srautas. Serializacija.

Detaliau

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej

Detaliau

(Microsoft Word - Pasiruo\360imas EE 10 KD-1)

(Microsoft Word - Pasiruo\360imas EE 10  KD-1) -as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.

Detaliau

DB sukūrimas ir užpildymas duomenimis

DB sukūrimas ir užpildymas duomenimis DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio

Detaliau

Microsoft Word - 8 Laboratorinis darbas.doc

Microsoft Word - 8 Laboratorinis  darbas.doc Laboratorinis darbas Nr. 8 MOP (metalo sido puslaidininkio) struktūrų tyrimas aukštadažniu -V charakteristikų metodu Darbo tikslas: 1. Nustatyti puslaidininkio laidumo tipą. 2. Nustatyti legiravimo priemaišų

Detaliau

10 Pratybos Oleg Lukašonok 1

10 Pratybos Oleg Lukašonok 1 10 Pratybos Oleg Lukašonok 1 2 Tikimybių pratybos 1 Lema Lema 1. Tegul {Ω, A, P} yra tikimybinė erdvė. Jeigu A n A, n N, tai i) P (lim sup A n ) = P ( k=1 n=k A n ) = lim P ( n k n=ka n ), nes n=ka n monotoniškai

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 12 paskaita 2019-05-08 Norint kažką sukonstruoti, reikia... turėti detalių. 13 paskaitos tikslas Susipažinti su python modulio add.py 1.1 versija. Sukurti skaitmeninį modelį

Detaliau

STATYTOJAS A. Zakaro firma IĮ STATINIO PROJEKTO PAVADINIMAS Inţinerinių statinių Klaipėdos m., Minijos g. 44 B rekonstravimo ir statybos projektas STA

STATYTOJAS A. Zakaro firma IĮ STATINIO PROJEKTO PAVADINIMAS Inţinerinių statinių Klaipėdos m., Minijos g. 44 B rekonstravimo ir statybos projektas STA STATYTOJAS A. Zakaro firma IĮ STATINIO PROJEKTO PAVADINIMAS Inţinerinių statinių Klaipėdos m., Minijos g. 44 B rekonstravimo ir statybos projektas STATYBOS RŪŠIS Statinio rekonstravimas STATINIO KATEGORIJA

Detaliau

Longse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP

Longse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP Longse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP RJ-45 interneto kabelio 1.4. Kompiuterio su prieiga

Detaliau

Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i

Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas int Suma (int X[], int n) int s = 0; s = s + X[i]; return s; double Suma (double X[], int

Detaliau

Mokinių tiriamojo darbo įgūdžių formavimas

Mokinių tiriamojo darbo įgūdžių formavimas Mokinių tiriamojo darbo įgūdžių formavimas per programavimo pamokas ir projektinėje veikloje Renata Burbaitė Panevėţio Juozo Balčikonio gimnazija Tiriamasis darbas mokykloje: ugdo mokinių kritinį mąstymą;

Detaliau

Dažniausios IT VBE klaidos

Dažniausios IT VBE klaidos Dažniausios IT VBE klaidos Renata Burbaitė renata.burbaite@gmail.com Kauno technologijos universitetas, Panevėžio Juozo Balčikonio gimnazija 1 Egzamino matrica (iš informacinių technologijų brandos egzamino

Detaliau

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 2007 m. rugsėjo 6 d. įsakymu Nr. ISAK-1790 VERSLO IR VADYBOS TECHNOLOGIJŲ BENDROJI PROGRAMA MOKINIAMS, BESIMOKANTIEMS PAGAL VIDURINIO UGDYMO

Detaliau

Projektas LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIUS ĮSAKYMAS DĖL RADIJO RYŠIO PLĖTROS MHz RADIJO DAŽNIŲ JUOSTOJE PLANO PAT

Projektas LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIUS ĮSAKYMAS DĖL RADIJO RYŠIO PLĖTROS MHz RADIJO DAŽNIŲ JUOSTOJE PLANO PAT Projektas LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIUS ĮSAKYMAS DĖL RADIJO RYŠIO PLĖTROS 3400 3800 MHz RADIJO DAŽNIŲ JUOSTOJE PLANO PATVIRTINIMO 2019 m. d. Nr. 1V- Vilnius Vadovaudamasis

Detaliau

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis

Detaliau

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant

Detaliau

PATVIRTINTA Valstybinės kainų ir energetikos kontrolės komisijos pirmininko 2017 m. d. įsakymu Nr. O1- VALSTYBINĖS KAINŲ IR ENERGETIKOS KONTROLĖS KOMI

PATVIRTINTA Valstybinės kainų ir energetikos kontrolės komisijos pirmininko 2017 m. d. įsakymu Nr. O1- VALSTYBINĖS KAINŲ IR ENERGETIKOS KONTROLĖS KOMI PATVIRTINTA Valstybinės kainų ir energetikos kontrolės komisijos pirmininko 2017 m. d. įsakymu Nr. O1- VALSTYBINĖS KAINŲ IR ENERGETIKOS KONTROLĖS KOMISIJOS ELEKTROS ENERGIJOS KAINŲ PALYGINIMO INFORMACINĖS

Detaliau

Duomenų vizualizavimas

Duomenų vizualizavimas Duomenų vizualizavimas Daugiamačių duomenų vizualizavimas: projekcijos metodai Aušra Mackutė-Varoneckienė Tomas Krilavičius 1 Projekcijos metodai Analizuojant daugiamačius objektus, kuriuos apibūdina n

Detaliau

Slide 1

Slide 1 Avansinio pelno mokesčio apskaičiavimo, sumokėjimo ir deklaravimo tvarka VMI prie FM Mokesčių informacijos departamentas 2017 m. Seminaro planas Avansinio pelno mokesčio (toliau avansinis PM) apskaičiavimas

Detaliau

BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS

BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS I. ĮŽANGA Lietuvos Respublikos ryšių reguliavimo tarnybos

Detaliau

Algoritmø analizës specialieji skyriai

Algoritmø analizës specialieji skyriai VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-28 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti.

Detaliau

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna

Detaliau

Printing triistr.wxmx

Printing triistr.wxmx triistr.wxmx / Triįstrižainių lygčių sistemų sprendimas A.Domarkas, VU, Teoriją žr. []; [], 7-7; []. Pradžioje naudosime Gauso algoritmą, kuriame po įstrižaine daromi nuliai. Po to grįždami į viršų virš

Detaliau

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys G E O M E T R I J A Gediminas STEPANAUSKAS 016 09 1 Turinys 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir tieses plok²tumoje normalines lygtys 111 Vektorine forma 11 Koordinatine forma 3 1 Bendroji plok²tumos

Detaliau

Slide 1

Slide 1 Dalelių filtro metodo ir vizualios odometrijos taikymas BPO lokalizacijai 2014 2018 m. studijos Doktorantas: Rokas Jurevičius Vadovas: Virginijus Marcinkevičius Disertacijos tikslas ir objektas Disertacijos

Detaliau

NACIONALINIS KIBERNETINIO SAUGUMO CENTRAS Tel El. p. NACIONALINIS KIBERNETINIO SAUGUMO CENTRAS PRIE KRAŠTO APSA

NACIONALINIS KIBERNETINIO SAUGUMO CENTRAS Tel El. p.   NACIONALINIS KIBERNETINIO SAUGUMO CENTRAS PRIE KRAŠTO APSA PRIE KRAŠTO APSAUGOS MINISTERIJOS SUTRUMPINTAS PRANEŠIMAS APIE KIBERNETINIO INCIDENTO TYRIMĄ NR. 163811 2019 m. balandžio 19 d. Vilnius TLP: WHITE Kibernetinio incidento tyrimo objektas: 2019-04-10 imituotų

Detaliau

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l 9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 2 paskaita 2019-02-13 Algoritmo sąvoka Algoritmas tai tam tikra veiksmų seka, kurią reikia atlikti norint gauti rezultatą. Įvesties duomenys ALGORITMAS Išvesties duomenys

Detaliau

EUROPOS KOMISIJA Briuselis, COM(2019) 122 final ANNEX 2 PRIEDAS prie Pasiūlymo dėl TARYBOS SPRENDIMO dėl pozicijos, kurios Europos Sąjunga

EUROPOS KOMISIJA Briuselis, COM(2019) 122 final ANNEX 2 PRIEDAS prie Pasiūlymo dėl TARYBOS SPRENDIMO dėl pozicijos, kurios Europos Sąjunga EUROPOS KOMISIJA Briuselis, 2019 03 07 COM(2019) 122 final ANNEX 2 PRIEDAS prie Pasiūlymo dėl TARYBOS SPRENDIMO dėl pozicijos, kurios Europos Sąjunga turi laikytis Jungtinių Amerikos Valstijų ir Europos

Detaliau

Projektą vykdančiojo personalo darbo užmokesčio ir savanoriško darbo įnašo fiksuotojo įkainio nustatymo tyrimo ataskaita 2016 m. birželio 8 d. redakci

Projektą vykdančiojo personalo darbo užmokesčio ir savanoriško darbo įnašo fiksuotojo įkainio nustatymo tyrimo ataskaita 2016 m. birželio 8 d. redakci Projektą vykdančiojo personalo darbo užmokesčio ir savanoriško darbo įnašo fiksuotojo įkainio nustatymo tyrimo ataskaita 2016 m. birželio 8 d. redakcija Lietuvos Respublikos vidaus reikalų ministerija

Detaliau

EUROPOS KOMISIJA Briuselis, C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) / dėl bendros sistemos techninių standa

EUROPOS KOMISIJA Briuselis, C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) / dėl bendros sistemos techninių standa EUROPOS KOMISIJA Briuselis, 2017 07 11 C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) /... 2017 07 11 dėl bendros sistemos techninių standartų ir formatų, kad EURES portale būtų galima susieti

Detaliau

VIEŠO NAUDOJIMO Aplinkos oro teršalų koncentracijos tyrimų, atliktų 2017 m. rugpjūčio d. Šiltnamių g. 23 Vilniaus mieste, naudojant mobiliąją la

VIEŠO NAUDOJIMO Aplinkos oro teršalų koncentracijos tyrimų, atliktų 2017 m. rugpjūčio d. Šiltnamių g. 23 Vilniaus mieste, naudojant mobiliąją la Aplinkos oro teršalų koncentracijos tyrimų, atliktų 2017 m. rugpjūčio 11 25 d. Šiltnamių g. 23 Vilniaus mieste, naudojant mobiliąją laboratoriją, rezultatų apžvalga Vilnius, 2017 m. Turinys Įžanga... 3

Detaliau

CarSense 303 M A G N E T I N Ė K I L P A N A U D O J I M O I N S T R U K C I J A

CarSense 303 M A G N E T I N Ė K I L P A N A U D O J I M O I N S T R U K C I J A CarSense 303 M A G N E T I N Ė K I L P A N A U D O J I M O I N S T R U K C I J A Turinys Produkto apžvalga 2 Specifikacija 3 Naudojimas 4 Nustatymai ir indikatoriai 7 Pajungimo kontaktai 8 Gedimų šalinimas

Detaliau

PS Testavimo ir konfigūravimo valdymas Užduotis nr. 1. Karolis Brazauskas Mindaugas Rekevičius Jonas Riliškis Eugenijus Sabaliauskas

PS Testavimo ir konfigūravimo valdymas Užduotis nr. 1. Karolis Brazauskas Mindaugas Rekevičius Jonas Riliškis Eugenijus Sabaliauskas PS Testavimo ir konfigūravimo valdymas Užduotis nr. 1. Karolis Brazauskas Mindaugas Rekevičius Jonas Riliškis Eugenijus Sabaliauskas 2014-10-01 IT Kompanija Dirbame pagal užsakymus, daugiausiai 2 projektai

Detaliau

VABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450)

VABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450) VABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450) 54275 El.p.rastine@vabalninko.birzai.lm.lt. GIMNAZIJOS VEIKLOS KOKYBĖS ĮSIVERTINIMO

Detaliau

PowerPoint Presentation

PowerPoint Presentation Duomenų archyvai ir mokslo duomenų valdymo planai 2018-06-13 1 Re3Data duomenų talpyklų registras virš 2000 mokslinių tyrimų duomenų talpyklų; talpyklos paiešką galima atlikti pagal mokslo kryptį, šalį,

Detaliau

Priedai_2016.indd

Priedai_2016.indd 1 testo užduočių vertinimo kriterijai Užd. Nr. Sprendimas ar atsakymas Taškai Vertinimas 1 Pasirinktas variantas D 1 Už teisingą atsakymą. 2 a) 939 1 Už teisingą atsakymą. 2 b) 1538 1 Už teisingą atsakymą.

Detaliau

Administravimo vadovas SAFTit Pro v3

Administravimo vadovas SAFTit Pro v3 SAF-T IT Pro programos administravimo vadovas Turinys 1. SQL užklausų modifikacija... 2 1.1. Užklausų katalogas ir kaip sukurti nestandartines užklausas... 2 1.2. Užklausų modifikavimas... 2 1.3. Specialieji

Detaliau

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V L I T U V O S J U N Ų J Ų T T I K Ų O K Y K L. TRIKPIŲ ČVINOS (017 019) Teorinę medžiagą parengė ir antrąją užduotį sudarė Vilniaus universiteto docentas dmundas azėtis atematikos pamokose nagrinėjamos

Detaliau

MatricosDetermTiesLS.dvi

MatricosDetermTiesLS.dvi MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas

Detaliau

Busto pritaikymo pirkimo salygos 10 obj rekonstr

Busto pritaikymo pirkimo salygos 10 obj rekonstr PATVIRTINTA Viešųjų pirkimų tarnybos prie Lietuvos Respublikos Vyriausyb s direktoriaus 2003 m. gruodžio 31 d. įsakymu Nr. 1S-121 (Viešųjų pirkimų tarnybos prie Lietuvos Respublikos Vyriausyb s direktoriaus

Detaliau

VĮ GIS-Centras Vilnius 2019 Palydovinių duomenų peržiūros ir analizės paslauga Naudotojo vadovas v.1

VĮ GIS-Centras Vilnius 2019 Palydovinių duomenų peržiūros ir analizės paslauga Naudotojo vadovas v.1 VĮ GIS-Centras Vilnius 2019 Palydovinių duomenų peržiūros ir analizės paslauga Naudotojo vadovas v.1 Turinys ĮŽANGA... 3 1. PALYDOVINIŲ DUOMENŲ PERŽIŪROS IR ANALIZĖS PASLAUGA... 4 1.1. Paslaugos apžvalga...

Detaliau

VALSTYBINIO SOCIALINIO DRAUDIMO FONDO VALDYBOS

VALSTYBINIO SOCIALINIO DRAUDIMO FONDO VALDYBOS VALSTYBINIO SOCIALINIO DRAUDIMO FONDO VALDYBOS PRIE SOCIALINĖS APSAUGOS IR DARBO MINISTERIJOS DIREKTORIAUS Į S A K Y M A S DĖL ELEKTRONINĖS DRAUDĖJŲ APTARNAVIMO SISTEMOS NAUDOJIMO TAISYKLIŲ PATVIRTINIMO

Detaliau

LIETUVOS RESPUBLIKOS VYRIAUSYBĖS KANCELIARIJA I Š V A D A DĖL KORUPCIJOS PASIREIŠKIMO TIKIMYBĖS 2014 m. gruodžio 2 d. Vilnius Vadovaujantis Lietuvos R

LIETUVOS RESPUBLIKOS VYRIAUSYBĖS KANCELIARIJA I Š V A D A DĖL KORUPCIJOS PASIREIŠKIMO TIKIMYBĖS 2014 m. gruodžio 2 d. Vilnius Vadovaujantis Lietuvos R LIETUVOS RESPUBLIKOS VYRIAUSYBĖS KANCELIARIJA I Š V A D A DĖL KORUPCIJOS PASIREIŠKIMO TIKIMYBĖS 2014 m. gruodžio 2 d. Vilnius Vadovaujantis Lietuvos Respublikos Vyriausybės 2002 m. spalio 8 d. nutarimu

Detaliau

Programų sistemų inžinerija Saulius Ragaišis, VU MIF

Programų sistemų inžinerija Saulius Ragaišis, VU MIF Programų sistemų inžinerija 2014-02-12 Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt SWEBOK evoliucija Nuo SWEBOK Guide to the Software Engineering Body of Knowledge, 2004 Version. IEEE, 2004. prie

Detaliau

CIVILINĖS AVIACIJOS ADMINISTRACIJOS DIREKTORIUS Į S A K Y M A S DĖL MĖGĖJIŠKOS KONSTRUKCIJOS ORLAIVIŲ GAMYBOS, JŲ TINKAMUMO SKRAIDYTI NUSTATYMO IR NAU

CIVILINĖS AVIACIJOS ADMINISTRACIJOS DIREKTORIUS Į S A K Y M A S DĖL MĖGĖJIŠKOS KONSTRUKCIJOS ORLAIVIŲ GAMYBOS, JŲ TINKAMUMO SKRAIDYTI NUSTATYMO IR NAU CIVILINĖS AVIACIJOS ADMINISTRACIJOS DIREKTORIUS Į S A K Y M A S DĖL MĖGĖJIŠKOS KONSTRUKCIJOS ORLAIVIŲ GAMYBOS, JŲ TINKAMUMO SKRAIDYTI NUSTATYMO IR NAUDOJIMO TAISYKLIŲ 2001 m. gruodžio 27 d. Nr. 109 Vilnius

Detaliau

Autorinė sutartis Nr

Autorinė sutartis Nr UAB INFORMACINIŲ TECHNOLOGIJŲ PASAULIS GENERALINIS DIREKTORIUS TOMAS LEVINSKAS SAULĖS ELEKTRINĖS ĮDIEGIMO KOMERCINIS PASIŪLYMAS 2012.08.21 Kaunas UAB Informacinių technologijų pasaulis Generalinis direktorius

Detaliau

PATVIRTINTA

PATVIRTINTA PATVIRTINTA Valstybinės mokesčių inspekcijos prie Lietuvos Respublikos finansų ministerijos viršininko 2003 m. vasario 7 d. įsakymu Nr. V-45 (2012 m. vasario 17 d. įsakymo Nr. VA-16 redakcija) (2012 m.

Detaliau

SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS

SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS TURINYS KLUBO SĄNARIO 3D REKONSTRUKCIJA... 3 DUBENKAULIO 3D REKONSTRUKCIJA... 4 KELIO SĄNARIO 3D REKONSTRUKCIJA... 5 PETIES SĄNARIO 3D REKONSTRUKCIJA... 6 KAUKOLĖS

Detaliau

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr Studijų programos aprašas Studijų programos pavadinimas Informatika Aukštojo mokslo institucija (-os), padalinys (-iai) Vilniaus universitetas, Matematikos ir informatikos fakultetas, Informatikos katedra

Detaliau

PATVIRTINTA Viešosios įstaigos Tauragės ligoninės Direktoriaus 2011 m. gruodţio 12 d. įsakymu Nr. V-119 VIEŠOSIOS ĮSTAIGOS TAURAGĖS LIGONINĖS MAŢOS VE

PATVIRTINTA Viešosios įstaigos Tauragės ligoninės Direktoriaus 2011 m. gruodţio 12 d. įsakymu Nr. V-119 VIEŠOSIOS ĮSTAIGOS TAURAGĖS LIGONINĖS MAŢOS VE PATVIRTINTA Viešosios įstaigos Tauragės ligoninės Direktoriaus 2011 m. gruodţio 12 d. įsakymu Nr. V-119 VIEŠOSIOS ĮSTAIGOS TAURAGĖS LIGONINĖS MAŢOS VERTĖS VIEŠŲJŲ PIRKIMŲ TVARKOS APRAŠAS I. BENDROSIOS

Detaliau

GPAIS vartotojo vadovas savivaldybėms GPAIS VARTOTOJO VADOVAS SAVIVALDYBIŲ PILDOMAI INFORMACIJAI GPAIS TURINYS 1. BENDRI DARBO SU GPAIS PRINCIPAI... 2

GPAIS vartotojo vadovas savivaldybėms GPAIS VARTOTOJO VADOVAS SAVIVALDYBIŲ PILDOMAI INFORMACIJAI GPAIS TURINYS 1. BENDRI DARBO SU GPAIS PRINCIPAI... 2 GPAIS VARTOTOJO VADOVAS SAVIVALDYBIŲ PILDOMAI INFORMACIJAI GPAIS TURINYS 1. BENDRI DARBO SU GPAIS PRINCIPAI... 2 1.1 PRISIJUNGIMAS PRIE IŠORINIO PORTALO... 2 2. Savivaldybių ir regiono plėtros tarybų ataskaitos...

Detaliau

Muzikos duomenų bazės NAXOS Music Library naudojimo vadovas Turinys Kas yra NAXOS Music Library... 2 Kaip pradėti naudotis... 3 Kaip atlikti paiešką..

Muzikos duomenų bazės NAXOS Music Library naudojimo vadovas Turinys Kas yra NAXOS Music Library... 2 Kaip pradėti naudotis... 3 Kaip atlikti paiešką.. Muzikos duomenų bazės NAXOS Music Library naudojimo vadovas Turinys Kas yra NAXOS Music Library... 2 Kaip pradėti naudotis... 3 Kaip atlikti paiešką... 3 Paprastoji paieška... 3 Išplėstinė paieška... 3

Detaliau

Lietuvos mokslo ir studijų institucijų kompiuterių tinklas LITNET Vilniaus universitetas Mokslininko darbo vietos paslauga Paslaugos naudojimo instruk

Lietuvos mokslo ir studijų institucijų kompiuterių tinklas LITNET Vilniaus universitetas Mokslininko darbo vietos paslauga Paslaugos naudojimo instruk Lietuvos mokslo ir studijų institucijų kompiuterių tinklas LITNET Vilniaus universitetas Mokslininko darbo vietos paslauga Paslaugos naudojimo instrukcija Paslauga sukurta vykdant Europos socialinio fondo

Detaliau

(Pasiūlymų dėl projektų atrankos kriterijų nustatymo ir keitimo forma) PASIŪLYMAI DĖL PROJEKTŲ ATRANKOS KRITERIJŲ NUSTATYMO IR KEITIMO 2017 m. lapkrič

(Pasiūlymų dėl projektų atrankos kriterijų nustatymo ir keitimo forma) PASIŪLYMAI DĖL PROJEKTŲ ATRANKOS KRITERIJŲ NUSTATYMO IR KEITIMO 2017 m. lapkrič (Pasiūlymų dėl projektų atrankos kriterijų nustatymo ir keitimo forma) PASIŪLYMAI DĖL PROJEKTŲ ATRANKOS KRITERIJŲ NUSTATYMO IR KEITIMO 2017 m. lapkričio d. FORMAI PRITARTA 2014-2020 m. Europos Sąjungos

Detaliau

LIETUVOS RESPUBLIKOS REGIONINĖS PLĖTROS ĮSTATYMO NR. VIII-1889 PAKEITIMO ĮSTATYMAS 2014 m. rugsėjo 18 d. Nr. XII-1094 Vilnius 1 straipsnis. Lietuvos R

LIETUVOS RESPUBLIKOS REGIONINĖS PLĖTROS ĮSTATYMO NR. VIII-1889 PAKEITIMO ĮSTATYMAS 2014 m. rugsėjo 18 d. Nr. XII-1094 Vilnius 1 straipsnis. Lietuvos R LIETUVOS RESPUBLIKOS REGIONINĖS PLĖTROS ĮSTATYMO NR. VIII-1889 PAKEITIMO ĮSTATYMAS 2014 m. rugsėjo 18 d. Nr. XII-1094 Vilnius 1 straipsnis. Lietuvos Respublikos regioninės plėtros įstatymo Nr. VIII-1889

Detaliau

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at MTEMTIKS BRNDS EGZMIN PRGRMS MINIMLIUS REIKLVIMUS ILIUSTRUJNTYS PVYZDŽII Egzamino programos minimalūs reikalavimai.. Paprastais atvejais patikrinti, ar duotoji seka ra aritmetinė/geometrinė progresija.

Detaliau

LT PRIEDAS Teikiant duomenis EURES veiklos vertinimo sistemai naudotinų rodiklių sąrašas Elektroninė šio sąrašo versija ir, jei jis bus iš dalies keič

LT PRIEDAS Teikiant duomenis EURES veiklos vertinimo sistemai naudotinų rodiklių sąrašas Elektroninė šio sąrašo versija ir, jei jis bus iš dalies keič LT PRIEDAS Teikiant duomenis EURES veiklos vertinimo sistemai naudotinų rodiklių sąrašas Elektroninė šio sąrašo versija ir, jei jis bus iš dalies keičiamas, konsoliduotos jo versijos nacionaliniams koordinavimo

Detaliau

Microsoft Word - PISKISVĮ18 straipsnio atskleidimai - INVL Technology

Microsoft Word - PISKISVÄ®18 straipsnio atskleidimai - INVL Technology Informacija asmenims, įsigyjantiems SUTPKIB INVL Technology išleistų nuosavybės vertybinių popierių, parengta pagal LR profesionaliesiems investuotojams skirtų subjektų įstatymo 18 straipsnio reikalavimus

Detaliau

Logines funkcijos termu generavimo algoritmas pagristas funkciniu modeliu

Logines funkcijos termu generavimo algoritmas pagristas funkciniu modeliu KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS PROGRAMŲ INŽINERIJOS KATEDRA Tomas Žemaitis LOGINĖS FUNKCIJOS TERMŲ GENERAVIMO ALGORITMAS PAGRĮSTAS PROGRAMINIO PROTOTIPO MODELIU Magistro darbas

Detaliau

RYŠIŲ REGULIAVIMO TARNYBOS

RYŠIŲ REGULIAVIMO TARNYBOS LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIUS ĮSAKYMAS DĖL LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS DIREKTORIAUS 2008 M. GRUODŽIO 24 D. ĮSAKYMO NR. 1V-1160 DĖL RADIJO DAŽNIŲ NAUDOJIMO

Detaliau

Pridėtinės vertės mokesčio sąskaitų faktūrų registrų duomenų tvarkymo ir pateikimo taisyklių priedas I.SAF DUOMENŲ RINKMENOS APRAŠYMAS I DALIS ANTRAŠT

Pridėtinės vertės mokesčio sąskaitų faktūrų registrų duomenų tvarkymo ir pateikimo taisyklių priedas I.SAF DUOMENŲ RINKMENOS APRAŠYMAS I DALIS ANTRAŠT Pridėtinės vertės mokesčio sąskaitų faktūrų registrų duomenų tvarkymo ir pateikimo taisyklių priedas I.SAF DUOMENŲ RINKMENOS APRAŠYMAS I DALIS ANTRAŠTĖ Privalomumas pavadinimas reikšmės 1. *** FileDescription

Detaliau

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų

Detaliau

479B-2018_Krka_Pravilnik_LT.cdr

479B-2018_Krka_Pravilnik_LT.cdr SUKČIAVIMO PREVENCIJOS, NUSTATYMO IR TYRIMO TAISYKLĖS www.krka.biz Gyventi sveikai 3 4 5 6 8 9 10 11 Tikslai Aprėptis ir taikymas Nevienodų sąlygų taikymo ir sukčiavimo draudimas Sukčiavimo valdymo kontrolės

Detaliau

VILNIAUS R. PABERŽĖS ŠV. STANISLAVO KOSTKOS GIMNAZIJOS 2, 4, 6 IR 8 KLASĖS MOKINIŲ MOKYMOSI PASIEKIMŲ VERTINIMO PANAUDOJANT DIAGNOSTINIUS IR STANDARTI

VILNIAUS R. PABERŽĖS ŠV. STANISLAVO KOSTKOS GIMNAZIJOS 2, 4, 6 IR 8 KLASĖS MOKINIŲ MOKYMOSI PASIEKIMŲ VERTINIMO PANAUDOJANT DIAGNOSTINIUS IR STANDARTI VILNIAUS R. PABERŽĖS ŠV. STANISLAVO KOSTKOS GIMNAZIJOS 2, 4, 6 IR 8 KLASĖS MOKINIŲ MOKYMOSI PASIEKIMŲ VERTINIMO PANAUDOJANT DIAGNOSTINIUS IR STANDARTIZUOTUS VERTINIMO ĮRANKIUS ATASKAITOS PRIEDAS MOKYKLOMS,

Detaliau

Jabra SPEAK 410 Naudotojo vadovas

Jabra SPEAK 410 Naudotojo vadovas Jabra SPEAK 410 Naudotojo vadovas www.jabra.com TURINYS SVEIKI...3 GAMINIO APŽVALGA...3 ĮRENGIMAS...4 PRIJUNGIMAS...4 KONFIGŪRACIJA...4 SKAMBINIMO FUNKCIJOS...4 2 SVEIKI Sveikiname įsigijus garsiakalbį

Detaliau

airbnb-pwc-taxguide-lithuania-lt

airbnb-pwc-taxguide-lithuania-lt Šį vadovą parengė nepriklausoma apskaitos įmonė 2018 m. rugsėjo LIETUVA SU TRUMPALAIKE NUOMA SUSIJĘ MOKESČIŲ KLAUSIMAI Toliau pateikta informacija yra gairės, padėsiančios susipažinti su kai kuriais mokesčių

Detaliau

DĖL APLINKOS IR SVEIKATOS MOKSLO KOMITETO ĮSTEIGIMO

DĖL APLINKOS IR SVEIKATOS MOKSLO KOMITETO ĮSTEIGIMO LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS ĮSAKYMAS DĖL LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRO 011 M. KOVO D. ĮSAKYMO NR. V-199 DĖL LIETUVOS HIGIENOS NORMOS HN 80:011 ELEKTROMAGNETINIS

Detaliau

SUSITIKIMO VIETA – NAUJAS ITALIJOS LIETUVIŲ TINKLAPIS

SUSITIKIMO VIETA – NAUJAS ITALIJOS LIETUVIŲ TINKLAPIS SUSITIKIMO VIETA NAUJAS ITALIJOS LIETUVIŲ TINKLAPIS Italijos lietuvių bendruomenė (ILB) pradeda naują etapą savo istorijoje ir pristato naują interneto tinklapį ITLIETUVIAI.IT. Jis atveria galimybę sužinoti,

Detaliau

Elektroninio dokumento nuorašas UKMERGĖS RAJONO SAVIVALDYBĖS ADMINISTRACIJOS DIREKTORIUS ĮSAKYMAS DĖL NACIONALINIO MOKINIŲ PASIEKIMŲ PATIKRINIMO (DIAG

Elektroninio dokumento nuorašas UKMERGĖS RAJONO SAVIVALDYBĖS ADMINISTRACIJOS DIREKTORIUS ĮSAKYMAS DĖL NACIONALINIO MOKINIŲ PASIEKIMŲ PATIKRINIMO (DIAG Elektroninio dokumento nuorašas UKMERGĖS RAJONO SAVIVALDYBĖS ADMINISTRACIJOS DIREKTORIUS ĮSAKYMAS DĖL NACIONALINIO MOKINIŲ PASIEKIMŲ PATIKRINIMO (DIAGNOSTINIŲ IR STANDARTIZUOTŲ TESTŲ) ORGANIZAVIMO, VYKDYMO

Detaliau

Priedas

Priedas Vilniaus Gedimino technikos universitetas skelbia konkursą išvardintose katedrose ir mokslo padaliniuose užimti šias pareigas: I. GAMTOS IR TECHNOLOGIJOS MOKSLŲ SRITYSE APLINKOS INŽINERIJOS FAKULTETE 1.

Detaliau

Microsoft Word - Pradedančiųjų pararašiutininkų rengimas sparno tipo parašiutu.doc

Microsoft Word - Pradedančiųjų pararašiutininkų rengimas sparno tipo parašiutu.doc TVIRTINU Lietuvos parašiutų sporto federacijos prezidentas 2002 m. balandžio 30 d. PRADEDANČIŲJŲ PARAŠIUTININKŲ RENGIMAS SPARNO TIPO PARAŠIUTU (PRIVERSTINIO SKLEIDIMO PROGRESIJOS METODAS) Apžvalga Čia

Detaliau

PowerPoint Presentation

PowerPoint Presentation REKLAMOS PRIEMONĖS Visų reklaminių pozicijų kainos pateiktos be PVM Marius Naraveckas Mob. +370 615 22 086 El.p m.naraveckas@ltou.lt Ryga KRYPTYS 9 MIESTAI 8 7 ŠALYS ~ 850 ~ 26000 ~ 316 000 KELEIVIO PORTRETAS

Detaliau

Sutartis aktuali nuo

Sutartis aktuali nuo VALSTYBINIO SOCIALINIO DRAUDIMO FONDO VALDYBA PRIE SOCIALINĖS APSAUGOS IR DARBO MINISTERIJOS ASMENS DUOMENŲ TEIKIMO SUTARTIS 201_ m. d. Nr. ADS- Vilnius Valstybinio socialinio draudimo fondo valdyba prie

Detaliau

Microsoft Word žindenių taisyklės.doc

Microsoft Word žindenių taisyklės.doc PATVIRTINTA Lietuvos Respublikos žemės ūkio ministro 2007 m. rugpjūčio 16 d. įsakymu Nr. 3D-383 ATSIETŲ NUO GAMYBOS PAPILDOMŲ NACIONALINIŲ TIESIOGINIŲ IŠMOKŲ UŽ KARVES ŽINDENES IR TELYČIAS MOKĖJIMO TAISYKLĖS

Detaliau

Ginčo byla Nr LIETUVOS BANKO PRIEŽIŪROS TARNYBOS FINANSINIŲ PASLAUGŲ IR RINKŲ PRIEŽIŪROS DEPARTAMENTO DIREKTORIUS SPRENDIMAS DĖL A. G. IR

Ginčo byla Nr LIETUVOS BANKO PRIEŽIŪROS TARNYBOS FINANSINIŲ PASLAUGŲ IR RINKŲ PRIEŽIŪROS DEPARTAMENTO DIREKTORIUS SPRENDIMAS DĖL A. G. IR Ginčo byla Nr. 2017-00665 LIETUVOS BANKO PRIEŽIŪROS TARNYBOS FINANSINIŲ PASLAUGŲ IR RINKŲ PRIEŽIŪROS DEPARTAMENTO DIREKTORIUS SPRENDIMAS DĖL A. G. IR AB LIETUVOS DRAUDIMAS GINČO NAGRINĖJIMO 2017 m. liepos

Detaliau

Microsoft Word - Palmolive_Drogas_full_rules_April_2019.doc

Microsoft Word - Palmolive_Drogas_full_rules_April_2019.doc Žaidimo Pirkite bet kurį PALMOLIVE produktą parduotuvėse Drogas ir laimėkite SPA Vilnius dovanų kuponą! rengimo taisyklės: 1. ŽAIDIMO UŽSAKOVAS, ORGAIZATORIUS IR PRIZŲ KOORDINATORIUS 1.1. Žaidimo užsakovas

Detaliau

LIETUVOS RESPUBLIKOS GYVENAMOSIOS VIETOS DEKLARAVIMO ĮSTATYMO NR. VIII-840 PAKEITIMO ĮSTATYMAS 2017 m. gruodžio 21 d. Nr. XIII-961 Vilnius 1 straipsni

LIETUVOS RESPUBLIKOS GYVENAMOSIOS VIETOS DEKLARAVIMO ĮSTATYMO NR. VIII-840 PAKEITIMO ĮSTATYMAS 2017 m. gruodžio 21 d. Nr. XIII-961 Vilnius 1 straipsni LIETUVOS RESPUBLIKOS GYVENAMOSIOS VIETOS DEKLARAVIMO ĮSTATYMO NR. VIII-840 PAKEITIMO ĮSTATYMAS 2017 m. gruodžio 21 d. Nr. XIII-961 Vilnius 1 straipsnis. Lietuvos Respublikos gyvenamosios vietos deklaravimo

Detaliau

PS_riba_tolydumas.dvi

PS_riba_tolydumas.dvi Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos

Detaliau

LIETUVOS HIDROMETEOROLOGIJOS TARNYBA PRIE APLINKOS MINISTERIJOS 2018 METŲ VEIKLOS ATASKAITA I. IŠORINIAI POKYČIAI LHMT yra vienintelė ofici

LIETUVOS HIDROMETEOROLOGIJOS TARNYBA PRIE APLINKOS MINISTERIJOS 2018 METŲ VEIKLOS ATASKAITA I. IŠORINIAI POKYČIAI LHMT yra vienintelė ofici LIETUVOS HIDROMETEOROLOGIJOS TARNYBA PRIE APLINKOS MINISTERIJOS 2018 METŲ VEIKLOS ATASKAITA 2019-01-28 I. IŠORINIAI POKYČIAI LHMT yra vienintelė oficiali šalyje patikimos inės informacijos, reikalingos

Detaliau

Projektas PATVIRTINTA Alytaus Sakalėlio pradinės mokyklos direktoriaus įsakymu Nr. V- ALYTAUS SAKALĖLIO PRADINĖS MOKYKLOS ELEKTRONINIO DIENYNO T

Projektas PATVIRTINTA Alytaus Sakalėlio pradinės mokyklos direktoriaus įsakymu Nr. V- ALYTAUS SAKALĖLIO PRADINĖS MOKYKLOS ELEKTRONINIO DIENYNO T PATVIRTINTA Alytaus Sakalėlio pradinės mokyklos direktoriaus 2019- įsakymu Nr. V- ALYTAUS SAKALĖLIO PRADINĖS MOKYKLOS ELEKTRONINIO DIENYNO TVARKYMO NUOSTATAI I SKYRIUS BENDROSIOS NUOSTATOS 1. Alytaus Sakalėlio

Detaliau

VILNIAUS KOLEGIJA AGROTECHNOLOGIJ FAKULTETAS CHEMIJOS KATEDRA Tyrimas: STUDENTAI APIE KURSINĮ DARBĄ Dalykas: LABORATORIJ VEIKLA Tyrimą atliko lektorė:

VILNIAUS KOLEGIJA AGROTECHNOLOGIJ FAKULTETAS CHEMIJOS KATEDRA Tyrimas: STUDENTAI APIE KURSINĮ DARBĄ Dalykas: LABORATORIJ VEIKLA Tyrimą atliko lektorė: VILNIAUS KOLEGIJA AGROTECHNOLOGIJ FAKULTETAS CHEMIJOS KATEDRA Tyrimas: STUDENTAI APIE KURSINĮ DARBĄ Dalykas: LABORATORIJ VEIKLA Tyrimą atliko lektorė: Jolanta Jurkevičiūtė m. Tyrimo tikslas išsiaiškinti

Detaliau

Reklaminių pozicijų įkainiai KLAIPĖDA 2017 m.

Reklaminių pozicijų įkainiai KLAIPĖDA 2017 m. Reklaminių pozicijų įkainiai 207 m Srautai Per 206 metus AKROPOLIUOSE pirko ir pramogavo daugiau kaip 48,3 mln žmonių Kodėl verta rinktis AKROPOLIO reklamines pozicijas? 2 3 4 5 6 Kontaktų skaičius yra

Detaliau

European Commission

European Commission EUROPOS KOMISIJA TEMINĖ APŽVALGA 2013 m. birželio 11 d., Briuselis Dažnai užduodami klausimai Bendras Europos dangus. Komisija imasi Europos oro erdvės pralaidumo didinimo veiksmų Kas yra Bendras Europos

Detaliau

PowerPoint Presentation

PowerPoint Presentation Montažų kūrimas iš skaitmeninių nuotraukų naudojant Windows Photo Story 3 programą Photo Story 3 Priedas Windows XP, Windows 8, Windows 10 Skirtas kurti dinamiškus fotoreportažus iš turimų skaitmeninių

Detaliau

Teismo praktikos rinkinys TEISINGUMO TEISMO (penktoji kolegija) SPRENDIMAS 2018 m. spalio 4 d. * Direktyva 2007/64/EB Mokėjimo paslaugos vidaus rinkoj

Teismo praktikos rinkinys TEISINGUMO TEISMO (penktoji kolegija) SPRENDIMAS 2018 m. spalio 4 d. * Direktyva 2007/64/EB Mokėjimo paslaugos vidaus rinkoj Teismo praktikos rinkinys TEISINGUMO TEISMO (penktoji kolegija) SPRENDIMAS 2018 m. spalio 4 d. * Direktyva 2007/64/EB Mokėjimo paslaugos vidaus rinkoje Sąvoka mokėjimo sąskaita Galimas taupomosios sąskaitos,

Detaliau

Individualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotoja

Individualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotoja Individualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotojams Alternatyvus valdymo pultas telefone ViPGaS programos

Detaliau

Europos Sąjungos Taryba Briuselis, 2016 m. spalio 28 d. (OR. en) Tarpinstitucinė byla: 2016/0344 (NLE) 13797/16 ADD 2 PECHE 400 PASIŪLYMAS nuo: gavimo

Europos Sąjungos Taryba Briuselis, 2016 m. spalio 28 d. (OR. en) Tarpinstitucinė byla: 2016/0344 (NLE) 13797/16 ADD 2 PECHE 400 PASIŪLYMAS nuo: gavimo Europos Sąjungos Taryba Briuselis, 2016 m. spalio 28 d. (OR. en) Tarpinstitucinė byla: 2016/0344 (NLE) 13797/16 ADD 2 PECHE 400 PASIŪLYMAS nuo: gavimo data: 2016 m. spalio 27 d. kam: Europos Komisijos

Detaliau

Veiksmų programų administravimo

Veiksmų programų administravimo (Pasiūlymų dėl projektų atrankos kriterijų nustatymo ir keitimo forma) PASIŪLYMAI DĖL PROJEKTŲ ATRANKOS KRITERIJŲ NUSTATYMO IR KEITIMO 2015 m. gegužės 19 d. FORMAI PRITARTA 2014 2020 m. Europos Sąjungos

Detaliau

2019 M. LIETUVOS ULTRALENGVŲJŲ ORLAIVIŲ PILOTŲ FEDERACIJOS ČEMPIONATO NUOSTATAI Šie nuostatai yra parengti pagal FAI Sportinio Kodekso 10 Sekciją. Org

2019 M. LIETUVOS ULTRALENGVŲJŲ ORLAIVIŲ PILOTŲ FEDERACIJOS ČEMPIONATO NUOSTATAI Šie nuostatai yra parengti pagal FAI Sportinio Kodekso 10 Sekciją. Org 2019 M. LIETUVOS ULTRALENGVŲJŲ ORLAIVIŲ PILOTŲ FEDERACIJOS ČEMPIONATO NUOSTATAI Šie nuostatai yra parengti pagal FAI Sportinio Kodekso 10 Sekciją. Organizatorius Vykdytojas UAB Ignalinos aerodromas UAB

Detaliau

PATVIRTINTA

PATVIRTINTA VALSTYBINĖS TERITORIJŲ PLANAVIMO IR STATYBOS INSPEKCIJOS PRIE APLINKOS MINISTERIJOS VIRŠININKAS ĮSAKYMAS DĖL VALSTYBINĖS TERITORIJŲ PLANAVIMO IR STATYBOS INSPEKCIJOS PRIE APLINKOS MINISTERIJOS VIRŠININKO

Detaliau

LYGIŲ GALIMYBIŲ KONTROLIERIUS PAŽYMA DĖL MIŠKO DARBŲ SĄUGOS TAISYKLIŲ DT 1-96 GALIMO PRIEŠTARAVIMO LIETUVOS RESPUBLIKOS MOTERŲ IR VYRŲ LYGIŲ GALIMYBIŲ

LYGIŲ GALIMYBIŲ KONTROLIERIUS PAŽYMA DĖL MIŠKO DARBŲ SĄUGOS TAISYKLIŲ DT 1-96 GALIMO PRIEŠTARAVIMO LIETUVOS RESPUBLIKOS MOTERŲ IR VYRŲ LYGIŲ GALIMYBIŲ LYGIŲ GALIMYBIŲ KONTROLIERIUS PAŽYMA DĖL MIŠKO DARBŲ SĄUGOS TAISYKLIŲ DT 1-96 GALIMO PRIEŠTARAVIMO LIETUVOS RESPUBLIKOS MOTERŲ IR VYRŲ LYGIŲ GALIMYBIŲ ĮSTATYMO 3 STRAIPSNIO 1 DALIES 1 PUNKTUI TYRIMO 2016-03-24

Detaliau