Printing triistr.wxmx

Dydis: px
Rodyti nuo puslapio:

Download "Printing triistr.wxmx"

Transkriptas

1 triistr.wxmx / Triįstrižainių lygčių sistemų sprendimas A.Domarkas, VU, Teoriją žr. []; [], 7-7; []. Pradžioje naudosime Gauso algoritmą, kuriame po įstrižaine daromi nuliai. Po to grįždami į viršų virš įstrizainės taip pat gauname nulius. Gauname sistemą su diagonaline matrica iš kurios lengvai užrašome sprendinius. Tam prireiks n- veiksmų su eilutėmis. Kadangi eilutėse yra daug nulių, tai daug kartų teks atlikti veiksmus su nuliais. Vadovėlyje [] rašoma, kad triįstrižainė sistema išsprendžiama maždaug kartų greičiau negu Gauso metodu. Pabandysime patikrinti tai. Naudosime komandą rowop(a, i, j, k), kuri iš matricos A i-osios eilutės atima j-ąją eilutę, padaugintą iš skaičiaus k. Išspręskime testinį uždavinį iš []: Figure : Užrašysime tokių matricų generavimo metodą, kuris tiks bet kuriam n. (%i) h[i,j]:=if i=j then elseif abs(i-j)= then / else $ (%i) M:genmatrix(h,,); (%o) (%i) A:addcol(M,[,,,/]); (%o) Gautoji matrica A yra lygčių sistemos išplėstinė matrica. (%i) makelist(sum(a[j,i]*x[i],i,,)=a[j,], j,, ); (%o) [ x + x =,x + x + x =,x + x + x =, x + x = ] (%i) solve(%); (%o) [[x =,x =,x =,x =]] Darome nulius po įstrižaine:

2 triistr.wxmx / (%i) A:rowop(A,,,A[,]/A[,]); (%o) (%i7) A:rowop(A,,,A[,]/A[,]); (%o7) (%i) A:rowop(A,,, A[,]/A[,]); (%o) virš įstrižainės: (%i) A:rowop(A,,, A[,]/A[,]); (%o) (%i) A:rowop(A,,, A[,]/A[,]); (%o)

3 triistr.wxmx / (%i) A:rowop(A,,, A[,]/A[,]); (%o) Gauname sprendinį: (%i) sol:makelist(a[k,]/a[k,k],k,,); (%o) [,,,] Patikriname: (%i) M.sol; (%o) Šį sprendimo būdą nesunku užrašyti su ciklo sakiniais. (%i) A:addcol(M,[,,,/]); (%o) (%i) n:matrix_size(a)[]; (%o) (%i) for k thru n- do A:rowop(A,k+,k,A[k+,k]/A[k,k])$ for k thru n- do A:rowop(A,n-k,n+-k, A[n-k,n+-k]/A[n+-k,n+-k])$ sol:makelist(a[k,n+]/a[k,k],k,,n); (%o) [,,,] Dabar išbandysime sprendimą su lygčių. (%i) n:$ (%i) h[i,j]:=if i=j then elseif i-j= then / elseif j-i= then / else $ (%i) M:genmatrix(h,n,n)$ (%i) d:makelist(random(),k,,n)$ (%i) A:addcol(M,d)$ (%i) fpprintprec:$

4 triistr.wxmx / (%i) if showtime#false then showtime:false else showtime:all$ Evaluation took. seconds (. elapsed) using bytes. (%i) for k thru n- do A:rowop(A,k+,k,A[k+,k]/A[k,k])$ for k thru n- do A:rowop(A,n-k,n+-k, A[n-k,n+-k]/A[n+-k,n+-k])$ sol:makelist(a[k,n+]/a[k,k],k,,n),numer$ Evaluation took 7. seconds (. elapsed) using 7.7 MB. Evaluation took 7.7 seconds (7.7 elapsed) using. MB. Evaluation took. seconds (. elapsed) using. MB. Matote sprendimo laiką. Su nauju spartesniu ir daugiau atminties turinčiu kompiuteriu rezultai turi būti geresni, bet tai daugiau priklauso nuo sprendimo metodo. Dabar skaičiuojame perkelties metodu (žr. [], p. 7) (%i) numer:true$ Evaluation took. seconds (. elapsed) using bytes. (%i) [a,b,c]:[/,,/]$ Evaluation took. seconds (. elapsed) using bytes. d[i] yra dešiniosios pusės elementai, tie patys kaip ir Gauso metode. (%i) [C[],D[]]:[-c/b,d[]/b]$ for i: thru n do [C[i],D[i]]:[-c/(b+C[i-]*a),(d[i]-D[i-]*a)/(b+C[i-]*a)]$ C[n]:$ for i:n thru step - do x[i]:c[i]*x[i+]+d[i]$ Evaluation took. seconds (. elapsed) using bytes. Evaluation took. seconds (. elapsed) using. MB. Evaluation took. seconds (. elapsed) using bytes. Evaluation took. seconds (. elapsed) using. KB. Matome, kad skaičiavimo laikas sudaro mažą sekundės dalį. Todėl su teiginiu, kad perkelties metodas yra kartų greitesnis už Gauso metodą tenka sutikti. Palyginame pirmuosius sprendinių, gautų abiem metodais. Matome, kad jie sutampa (%i) showtime:false$ (%i) makelist(x[k],k,,); (%o) [.,.,.,.,.77,.,.777,.,.7,.] (%i7) makelist(sol[k],k,,); (%o7) [.,.,.,.,.77,.,.777,.,.7,.] (%i) x[]; (%o). (%i) sol[]; (%o). Perkelties metodas yra realizuotas mano komandoje "solvediag". (%i) kill(all)$ reset()$ fpprintprec:$ ratprint:false$ Triįstrižainių sistemų sprendimiui perkelties metodu([], 7-7) sudarome komandą

5 triistr.wxmx / (%i) solvediag(a,b,c,d):=block([n,x,a,c,c,d,numer], local(c,d,x), numer:true, n:length(d), if length(b)#n or length(a)#n- or length(c)#n- then error("wrong length of data"), a:cons(,a), c:endcons(,c), [C[],D[]]:[-c[]/b[],d[]/b[]], for i: thru n do [C[i],D[i]]:[-c[i]/(b[i]+C[i-]*a[i]),(d[i]-D[i-]*a[i])/(b[i]+C[i-]*a[i])], C[n]:, for i:n thru step - do x[i]:c[i]*x[i+]+d[i], makelist(x[k],k,,n) )$ Čia naudojami tokie pat pažymėjimai, kaip [], psl. 7. Sąrašas a yra apatinė matricos įstrižainė; sąrašas b yra pagrindinė matricos įstrižainė; sąrašas c yra viršutinė matricos įstrižainė; sąrašas d yra dešinioji sistemos pusė. Turi būti: length(a) = length(c) = n -, lenhth(b) = length(b) = n. Pavyzdys. Naudodamiesi komandą "solvediag" išspręsime testinį uždavinį, nagrinėtą pradžioje. (%i) a:[/, /, /]$ b:[,,, ]$ c:[/, /, /]$ d:[,,,.]$ (%i) solvediag(a,b,c,d); (%o) [.,.,.,.] (%i) ratsimp(%); (%o) [,,,] Daugiau komandos "solvediag" taikymo pavyzdžių rasite failuose KubiniaSplainai.pdf, TriistrizainesSistemos.pdf, Niutono.pdf Užduotys.. Panagrinėkite atvejį, kai kurie pagrindinės įstrižainės elementai yra lygus nuliui, nes šiuo atveju kartais gaunama dalyba iš nulio. Patobulinkite programą šiam atvejui.. Kompiuterinės algebros pagalba raskite čia nagrinėtos matricos n-osios eilės determinantą.. Pavyzdžiui, kai a = [/, /,...], b =[,,...], c = [,,...], tai n-osios eilės determinantas lygus ^(n/)*(sqrt()*sin((%pi*n)/)+cos((%pi*n)/)). (Žr. [], Example..). Pirmuosius determinantus galima patikrinti taip: (%i) kill(all)$ (%i) numer:false$ (%i) h[i,j]:=if i=j then elseif i=j+ then / elseif i=j- then else $ (%i) A(n):= genmatrix(lambda([i,j], h[i,j]), n, n)$

6 triistr.wxmx / (%i) makelist(a(n),n,,); (%o) [,,,, ] (%i) D(n):=determinant(A(n))$ (%i) makelist(d(k),k,,); (%o) [,,,,, 7,,,, ] (%i7) D(n):=^(n/)*(sqrt()*sin((%pi*n)/)+cos((%pi*n)/)); Ñ Ñ (%o7) D( n ):= n p Ù n Ù n sin +cos / Ñ (%i) makelist(d(k),k,,); (%o) [,,,,, 7,,,,,,7,7,7,,,,,, ] Kaip išvesite šią formulę? Metodą rasite []. Literatūra: [] O.Štikonienė, Skaitinių metodų paskaitos, [] R.Čiegis, V.Būda, Skaičiuojamoji matematika, Vilnius, TEV,7. [] [] M.E.A. El-Mikkawy, A fast algorithm for evaluating nth order tri-diagonal determinants, Journal of Computational and Applied Mathematics () [] P.Drungilas, H.Markšaitis, Algebra, I dalis, VU,

Printing AtvirkstineMatrica.wxmx

Printing AtvirkstineMatrica.wxmx AtvirkstineMatrica.wxmx / Atvirkštinė matrica A.Domarkas, VU, Teoriją žr. [], 8-; []. Figure : Toliau pateiksime atvirkštinės matricos apskaičiavimo būdus su CAS Maxima. su komanda invert pavyzdys. [],

Detaliau

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų

Detaliau

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm BaziniaiSprendiniai&KrastutiniaiTaskai.wxm / Baziniai sprendiniai ir kraštutiniai taškai (C) A.Domarkas, VU, 25 žr.: [] 2-252; [2] 9-98; [3] 33-; [] 89-98; [5] 6.3 Tegul tiesinių lygčių sistemos nežinomųjų

Detaliau

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant

Detaliau

MatricosDetermTiesLS.dvi

MatricosDetermTiesLS.dvi MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas

Detaliau

(Microsoft Word - Pasiruo\360imas EE 10 KD-1)

(Microsoft Word - Pasiruo\360imas EE 10  KD-1) -as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.

Detaliau

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna

Detaliau

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul lgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7. pibr eµzimas. Matrica yra m eiluµciu¾ir n stulpeliu¾turinti staµciakamp e lentel e su joje i¾rašytais

Detaliau

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej

Detaliau

QR algoritmas paskaita

QR algoritmas paskaita Turinys QR algoritmas 4 paskaita Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 4 5 TA skaitiniai metodai ( MIF VU) Tiesinių lygčių sistemų sprendimas / 40 TA skaitiniai

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje

Detaliau

Algoritmø analizës specialieji skyriai

Algoritmø analizës specialieji skyriai VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo

Detaliau

Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ

Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #include main() int mas[100]; int k; for (int

Detaliau

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį.

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį. 00 Nustatykite funkcijos f() = +2 6 cos ( 3) apibrėžimo sritį (, 0) (0, 2) (2, + ) 2 (, 2) ( 2, + ) 3 (, 2] 4 [ 2, + ) 5 [2, ) 6 (, 2] 7 (, + ) 8 [ 2, 0) (0, + ) 0 (, 2) (2, + ) { a + b, kai 7, Raskite

Detaliau

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3)

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių 11-12 klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) 4, 4 (5 6) 7, 7 (8 9) 10,..., 2014 (2015 2016) 2017.

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to

Detaliau

lec10.dvi

lec10.dvi paskaita. Euklido erdv_es. pibr_ezimas. Vektorin_e erdv_e E virs realiuju skaiciu kuno vadinama Euklido erdve, jeigu joje apibr_ezta skaliarin_e sandauga, t.y. tokia funkcija, kuri vektoriu porai u; v

Detaliau

Microsoft Word - 15_paskaita.doc

Microsoft Word - 15_paskaita.doc 15 PASKAITA Turinys: Išimtys Išimtys (exceptions) programos vykdymo metu kylančios klaidingos situacijos, nutraukiančios programos darbą (pavyzdžiui, dalyba iš nulio, klaida atveriant duomenų failą, indekso

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-28 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti.

Detaliau

Isvestiniu_taikymai.dvi

Isvestiniu_taikymai.dvi IŠVESTINIŲ TAIKYMAI Pagrindinės analizės teoremos Monotoninės funkcijos išvestinė Funkcijos ekstremumai Funkcijos didžiausia ir mažiausia reikšmės intervale Kreivės iškilumas Funkcijos grafiko asimptotės

Detaliau

Dažniausios IT VBE klaidos

Dažniausios IT VBE klaidos Dažniausios IT VBE klaidos Renata Burbaitė renata.burbaite@gmail.com Kauno technologijos universitetas, Panevėžio Juozo Balčikonio gimnazija 1 Egzamino matrica (iš informacinių technologijų brandos egzamino

Detaliau

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l 9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios

Detaliau

Neiškiliojo optimizavimo algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį

Neiškiliojo optimizavimo  algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį Neiškiliojo optimizavimo algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį. Albertas Gimbutas 2018 m. birželio 19 d. Vadovas: Prof. habil. dr. Antanas

Detaliau

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee 001 x 1 2 + x + 12 lim x 4 2x 1 2; 0; 2 1 2; 5 1; 6 2; ; 1 2 4 riba neegzistuoja; 14x 2 2 + 29 lim x 1x 2 + 4x + 9 1 1; 2 29 9 ; ; 4 0; 5 riba neegzistuoja; 6 1 14; 14 1; 14 x + 1 lim x 4 x 4 1 riba neegzistuoja;

Detaliau

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem. 2018 m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta grafų algoritmams, tačiau apibrėžus gretimumo matricą

Detaliau

Hands-on exercise

Hands-on exercise Patvirtinamasis dokumentas 1 (4) 2017 m. gegužės 25 d. Praktinė užduotis Su sprendiniais 1 Turinys 1. Įvadas... 2 2. Instrukcijos... 2 2.1. Sutartiniai ženklai... 2 2.2. Užduoties etapai... 2 3. Užduoties

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 2 paskaita 2019-02-13 Algoritmo sąvoka Algoritmas tai tam tikra veiksmų seka, kurią reikia atlikti norint gauti rezultatą. Įvesties duomenys ALGORITMAS Išvesties duomenys

Detaliau

IKT varžybos Pakeliaukime po informacijos pasaulį Varžybų vykdymo eiga 1. Komandų prisistatymas Susipažinkime užduotis (1 priedas) Mokinukui per

IKT varžybos Pakeliaukime po informacijos pasaulį Varžybų vykdymo eiga 1. Komandų prisistatymas Susipažinkime užduotis (1 priedas) Mokinukui per Varžybų vykdymo eiga 1. Komandų prisistatymas Susipažinkime. 2. 1 užduotis (1 priedas) Mokinukui per IT pamoką mokytoja uždavė užduotį surašyti IT sąvokas. Buvo bebaigiąs darbą, kai suskambo telefonas.

Detaliau

Projektas

Projektas 1 PRIEDAS PATVIRTINTA Vytauto Didžiojo universiteto Menotyros mokslo krypties doktorantūros komiteto 2019 m. gegužės 28 d. posėdžio nutarimu Nr.1 ATVIRO KONKURSO Į MENOTYROS MOKSLO KRYPTIES DOKTORANTŪROS

Detaliau

1

1 KAUNO TECHNOLOGIJOS UNIVERSITETAS MATEMATIKOS IR GAMTOS MOKSLŲ FAKULTETAS MATEMATINIO MODELIAVIMO KATEDRA Mindaugas Bražėnas APROKSIMAVIMAS FAZINIAIS SKIRSTINIAIS BEI JŲ TAIKYMAS APTARNAVIMO SISTEMOMS

Detaliau

Priedai_2016.indd

Priedai_2016.indd 1 testo užduočių vertinimo kriterijai Užd. Nr. Sprendimas ar atsakymas Taškai Vertinimas 1 Pasirinktas variantas D 1 Už teisingą atsakymą. 2 a) 939 1 Už teisingą atsakymą. 2 b) 1538 1 Už teisingą atsakymą.

Detaliau

Microsoft PowerPoint - NMVA_TIMSS2011_2013_pristatymas_viskas

Microsoft PowerPoint - NMVA_TIMSS2011_2013_pristatymas_viskas International Association for the Evaluation of Educational Achievement Trends in International Mathematics and Science Study TIMSS 2011 Tyrimo tikslai bei populiacija Tyrimas TIMSS (Trends in International

Detaliau

1. Matematinės dėlionės Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvai

1. Matematinės dėlionės Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvai Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvairias sprendimo galimybes. Prieš kiekvieną naujos rūšies dėlionę pateiktas pavyzdys,

Detaliau

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų Atranka į 019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų skaičių seką a 1, a, a 3,..., o tada apibrėžė naują

Detaliau

RET2000 Elektronisis Skaitmeninis Termostatas su LCD

RET2000 Elektronisis Skaitmeninis Termostatas su LCD MAKING MODERN LIVING POSSIBLE RET2000 B/M/MS Elektroninis skaitmeninis termostatas su LCD Danfoss Heating Montavimo vadovas Norėdami gauti išsamią spausdintą šių instrukcijų versiją, skambinkite Rinkodaros

Detaliau

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra

Detaliau

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai MATLAB komandų seka, vadinama programa, įrašyta į failą. Vykdant skripto failą įvykdomos jame esančios komandos. Bus kalbama, kaip sukurti

Detaliau

PS_riba_tolydumas.dvi

PS_riba_tolydumas.dvi Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos

Detaliau

DB sukūrimas ir užpildymas duomenimis

DB sukūrimas ir užpildymas duomenimis DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio

Detaliau

Logines funkcijos termu generavimo algoritmas pagristas funkciniu modeliu

Logines funkcijos termu generavimo algoritmas pagristas funkciniu modeliu KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS PROGRAMŲ INŽINERIJOS KATEDRA Tomas Žemaitis LOGINĖS FUNKCIJOS TERMŲ GENERAVIMO ALGORITMAS PAGRĮSTAS PROGRAMINIO PROTOTIPO MODELIU Magistro darbas

Detaliau

Projektas

Projektas PATVIRTINTA Kauno technologijos universiteto Lietuvos socialinių tyrimų centro Vytauto Didžiojo universiteto Sociologijos mokslo krypties doktorantūros komiteto 2019 m. gegužės 8 d. posėdžio nutarimu Nr.

Detaliau

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluation of Random Search Optimization Algorithms Magistro

Detaliau

Projektas

Projektas PATVIRTINTA Kauno technologijos universiteto Lietuvos socialinių tyrimų centro Vytauto Didžiojo universiteto Sociologijos mokslo krypties doktorantūros komiteto 2017 m. birželio 6 d. posėdžio nutarimu

Detaliau

ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas

ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas Turinys 1 Skaičiavimo sistemos 3 11 Sveikųjų dešimtainių skaičių išreiškimas dvejetaine, aštuntaine

Detaliau

Longse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP

Longse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP Longse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP RJ-45 interneto kabelio 1.4. Kompiuterio su prieiga

Detaliau

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V L I T U V O S J U N Ų J Ų T T I K Ų O K Y K L. TRIKPIŲ ČVINOS (017 019) Teorinę medžiagą parengė ir antrąją užduotį sudarė Vilniaus universiteto docentas dmundas azėtis atematikos pamokose nagrinėjamos

Detaliau

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis

Detaliau

DIGIPASS DP 260 VARTOTOJO INSTRUKCIJA

DIGIPASS DP 260 VARTOTOJO INSTRUKCIJA DIGIPASS DP 260 VARTOTOJO INSTRUKCIJA Turinys 1. Kas tai yra DIGIPASS? 2. Kaip įjungti DIGIPASS, įvesti ir pakeisti PIN- kodą? 3.Kaip naudotis DIGIPASS? 1. Kas tai yra? - DIGIPASS 260 Kliento identifikavimo

Detaliau

Slaptažodžių generatoriaus naudojimo instrukcija Slaptažodžių generatorius tai aukščiausius saugumo reikalavimus atitinkantis įrenginys, kuris generuo

Slaptažodžių generatoriaus naudojimo instrukcija Slaptažodžių generatorius tai aukščiausius saugumo reikalavimus atitinkantis įrenginys, kuris generuo Slaptažodžių generatoriaus naudojimo instrukcija Slaptažodžių generatorius tai aukščiausius saugumo reikalavimus atitinkantis įrenginys, kuris generuoja vienkartinius skaitmenimis išreiškiamus slaptažodžius.

Detaliau

Projektas

Projektas 1 priedas PATVIRTINTA Vytauto Didžiojo universiteto su Mykolo Romerio universitetu, Aleksandro Stulginskio universitetu, Klaipėdos universitetu, Šiaulių universitetu Vadybos mokslo krypties doktorantūros

Detaliau

PowerPoint Presentation

PowerPoint Presentation Nacionalinio egzaminų centro projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas (kodas VP1-2.1-ŠMM-01-V-03-003) 1 seminaras Dalykinių

Detaliau

Pazymejimai_

Pazymejimai_ DOKUMENTŲ (PAŽYMĖJIMŲ), SUTEIKIANČIŲ TEISĘ JUOS PATEIKUSIEMS ASMENIMS NAUDOTIS KELIŲ TRANSPORTO LENGVATOMIS, PAVYZDŽIAI Važiavimo keleiviniu kelių transportu lengvatos pagal Lietuvos Respublikos transporto

Detaliau

Kauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė i

Kauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė i Kauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė ikimokyklinio ir priešmokyklinio amžiaus ir jaunesnio

Detaliau

PRATYBOS PASAULIO PAŽINIMAS Gegužė Mus supantys ženklai Ženklai mums padeda 1 Kokius ženklus derėtų pakabinti, kad pagerintume paveikslėliuose vaizduo

PRATYBOS PASAULIO PAŽINIMAS Gegužė Mus supantys ženklai Ženklai mums padeda 1 Kokius ženklus derėtų pakabinti, kad pagerintume paveikslėliuose vaizduo PASAULIO PAŽINIMAS Ženklai mums padeda Kokius ženklus derėtų pakabinti, kad pagerintume paveikslėliuose vaizduojamas situacijas. Užbaik sakinius. Ženklas nepadės, jei.. Kultūringas žmogus niekada... Kaip

Detaliau

Programų sistemų inžinerija Saulius Ragaišis, VU MIF

Programų sistemų inžinerija Saulius Ragaišis, VU MIF Programų sistemų inžinerija 2014-02-12 Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt SWEBOK evoliucija Nuo SWEBOK Guide to the Software Engineering Body of Knowledge, 2004 Version. IEEE, 2004. prie

Detaliau

PowerPoint Presentation

PowerPoint Presentation REKLAMOS PASIŪLYMAI LITEXPO yra pagrindinis ir didžiausias Baltijos šalyse parodų ir konferencijų centras siūlantis Jums ypač didelį tikslinių lankytojų srautą. Mes užtikriname Jūsų prekinio ženklo žinomumo

Detaliau

Projektas

Projektas Generolo Jono Žemaičio Lietuvos karo akademijos Kauno technologijos universiteto Klaipėdos universiteto Vytauto Didžiojo universiteto Politikos mokslų krypties doktorantūros komiteto 2019 m. gegužės 10

Detaliau

DBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas

DBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas DBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas Seminaro tikslai Trumpai apžvelgti pagrindinius DBVS komponentus Detaliai nagrinėjami optimalaus duomenų dėstymo

Detaliau

Microsoft Word - 8 Laboratorinis darbas.doc

Microsoft Word - 8 Laboratorinis  darbas.doc Laboratorinis darbas Nr. 8 MOP (metalo sido puslaidininkio) struktūrų tyrimas aukštadažniu -V charakteristikų metodu Darbo tikslas: 1. Nustatyti puslaidininkio laidumo tipą. 2. Nustatyti legiravimo priemaišų

Detaliau

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 2007 m. rugsėjo 6 d. įsakymu Nr. ISAK-1790 VERSLO IR VADYBOS TECHNOLOGIJŲ BENDROJI PROGRAMA MOKINIAMS, BESIMOKANTIEMS PAGAL VIDURINIO UGDYMO

Detaliau

VILNIAUS UNIVERSITETO STUDENTŲ ATSTOVYBĖ Vilnius University Students Representation PIRMOS PASKAITOS APKLAUSOS APIBENDRINIMAS FAKULTETUOSE 2011m. RUDE

VILNIAUS UNIVERSITETO STUDENTŲ ATSTOVYBĖ Vilnius University Students Representation PIRMOS PASKAITOS APKLAUSOS APIBENDRINIMAS FAKULTETUOSE 2011m. RUDE VILNIAUS UNIVERSITETO STUDENTŲ ATSTOVYBĖ Vilnius University Students Representation PIRMOS PASKAITOS APKLAUSOS APIBENDRINIMAS FAKULTETUOSE 2011m. RUDENS SEMESTRAS Studentai, susipažinę su Vilniaus universiteto

Detaliau

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at MTEMTIKS BRNDS EGZMIN PRGRMS MINIMLIUS REIKLVIMUS ILIUSTRUJNTYS PVYZDŽII Egzamino programos minimalūs reikalavimai.. Paprastais atvejais patikrinti, ar duotoji seka ra aritmetinė/geometrinė progresija.

Detaliau

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s},

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, B 1 = {{i, p}, {i, e}, {z, e}, {u, e}, {u, s}}. Grafai

Detaliau

A

A ALGORITMAI 14. Algoritmo sąvoka ir savybės Dirbdami kasdieninius darbus dažniausiai nesusimąstome, kokius veiksmus ir kokia tvarka atliekame. Apie tai pagalvojame, kai norime kokį nors darbą pavesti kitam.

Detaliau

flauto/ ) ))) )))) )))) )).. ) )))))) )))) ). ) ))))) ) )))))) Ṫ ))))))))))))))) 89 )))))))))))))#) )$) )&) $))$))$)))&)&)$) $))$))

flauto/ ) ))) )))) )))) )).. ) )))))) )))) ). ) ))))) ) )))))) Ṫ ))))))))))))))) 89 )))))))))))))#) )$) )&) $))$))$)))&)&)$) $))$)) flauto/ 77?@ 5 4 8 85 ) ))) )))) )))) )).. ) )))))) )))) ). ) ))))) ) )))))) Ṫ ))))))))))))))) 89 )))))))))))))#) )$) )&) $))$))$)))&)&)$) $))$))&)&))#) ) ) )! )! ). ) $) ).)#) ). ) ) ) ) ) 9 )#) ) ) )

Detaliau

Slide 1

Slide 1 Avansinio pelno mokesčio apskaičiavimo, sumokėjimo ir deklaravimo tvarka VMI prie FM Mokesčių informacijos departamentas 2017 m. Seminaro planas Avansinio pelno mokesčio (toliau avansinis PM) apskaičiavimas

Detaliau

PowerPoint Presentation

PowerPoint Presentation Lietuvos ekonomikos raida: naujausios tendencijos ir iššūkiai Pristato Nerijus Černiauskas Makroekonomikos ir prognozavimo skyrius Ekonomikos departamentas 2017 m. spalio 16 d. Turinys I. Realusis sektorius

Detaliau

Vaclovas Augustinas Tėvynei giedu naują giesmę 2016 m. Lietuvos moksleivių dainų šventei ( Versija dviem balsam, be akompanimento) Vilnius 2015

Vaclovas Augustinas Tėvynei giedu naują giesmę 2016 m. Lietuvos moksleivių dainų šventei ( Versija dviem balsam, be akompanimento) Vilnius 2015 Vaclovas Augustinas Tėvynei giedu naują giesmę 2016 m. Lietuvos moksleivių dainų šventei ( Versija dviem balsam, be akompanimento) Vilnius 2015 Tėvynei giedu naują giesmę Lotyniškai Lietuviškai Komentaras

Detaliau

Slide 1

Slide 1 Dalelių filtro metodo ir vizualios odometrijos taikymas BPO lokalizacijai 2014 2018 m. studijos Doktorantas: Rokas Jurevičius Vadovas: Virginijus Marcinkevičius Disertacijos tikslas ir objektas Disertacijos

Detaliau

Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i

Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas int Suma (int X[], int n) int s = 0; s = s + X[i]; return s; double Suma (double X[], int

Detaliau

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, 0--. Magdalena Raseiniškė mėgsta pradėti bet kurį darbą tokiu uždaviniu, kurį, kaip ji sako,

Detaliau

Specialus pasiūlymas Specialus pasiūlymas! Įsigijus vadovėlius visai klasei* mokytojams dovanojame vertingas dovanas 1. Kodėl sukūrėme šį pasiūlymą? N

Specialus pasiūlymas Specialus pasiūlymas! Įsigijus vadovėlius visai klasei* mokytojams dovanojame vertingas dovanas 1. Kodėl sukūrėme šį pasiūlymą? N Specialus pasiūlymas Specialus pasiūlymas! Įsigijus vadovėlius visai klasei* mokytojams dovanojame vertingas dovanas 1. Kodėl sukūrėme šį pasiūlymą? Norėdami maksimaliai patenkinti mokytojų ir mokyklų

Detaliau

Microsoft PowerPoint Dvi svarbios ribos [Read-Only]

Microsoft PowerPoint Dvi svarbios ribos [Read-Only] Dvi svarbios ribos Nykstamųjų funkcijų palyginimas. Ekvivalenčios nykstamosios funkcijos. Funkcijos tolydumo taške apibrėžimas. Tolydžiųjų funkcijų atkarpoje savybės. Trūkiosios funkcijos. Trūko taškų

Detaliau

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo XI skyrius KŪNAI 1 Kūno sa voka 1 1 Šiame skyriuje nagrinėsime kūnus Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijos dėsniai, žymimi + ir, ir vadinami aibės k elementu sudėtimi

Detaliau

Microsoft Word - Ch-vert-1-09.doc

Microsoft Word - Ch-vert-1-09.doc PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 009 m. birželio 6 d. įsakymu (..)-V-98 009 m. EMIJS VALSTYBINI BRANDS EGZAMIN UÞDUTIES VERTINIM INSTRUKIJA Kiekvienas I dalies klausimas vertinamas

Detaliau

Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis

Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis Klaidų apdorojimas C kalboje If (kazkokia_salyga) { klaidos_apdorojimas(); return... } Tokio kodo apimtis galėdavo sekti iki 70-80proc. Klaidų/išimčių

Detaliau

Estijos bendrasis ugdymas –Socialiniai mokslai

Estijos bendrasis ugdymas –Socialiniai mokslai Projektas Bendrojo ugdymo mokytojų bendrųjų ir dalykinių kompetencijų tobulinimas Projekto kodas 09.4.2-ESFA-V-715-02-0001. Informatikos mokymo kaitos tendencijos, poreikiai ir naujovės dr. Renata Burbaitė

Detaliau

Projektas

Projektas PATVIRTINTA Valstybinės kalbos inspekcijos viršininko 2005 m. spalio 12 d. įsakymu Nr. T-12 VALSTYBINĖS KALBOS VARTOJIMO IR TAISYKLINGUMO KONTROLĖS PRINCIPAI, KRITERIJAI IR JŲ TAIKYMO METODIKA I. BENDROSIOS

Detaliau

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa III SVEIKI NENEIGIAMI SKAIČIAI 31 Indukcijos aksioma Natūraliu aibės sa voka viena svarbiausiu matematikoje Nors natūralaus skaičiaus sa voka labai sena, bet šio skaičiaus buveinės sa voka buvo suformuluota

Detaliau

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys G E O M E T R I J A Gediminas STEPANAUSKAS 016 09 1 Turinys 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir tieses plok²tumoje normalines lygtys 111 Vektorine forma 11 Koordinatine forma 3 1 Bendroji plok²tumos

Detaliau

24 VERSLO APSKAITOS STANDARTO MR

24 VERSLO APSKAITOS STANDARTO MR Audito, apskaitos, turto vertinimo ir nemokumo valdymo tarnyba PATVIRTINTA Audito, apskaitos, turto vertinimo ir nemokumo valdymo tarnybos prie Lietuvos Respublikos finansų ministerijos direktoriaus 2016

Detaliau

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr Studijų programos aprašas Studijų programos pavadinimas Informatika Aukštojo mokslo institucija (-os), padalinys (-iai) Vilniaus universitetas, Matematikos ir informatikos fakultetas, Informatikos katedra

Detaliau

VIDURINIO UGDYMAS Vidurinis ugdymas neprivalomas, trunka dvejus metus (11 ir 12 vidurinės mokyklos ar gimnazijų III IV klasės). Mokiniai mokosi pagal

VIDURINIO UGDYMAS Vidurinis ugdymas neprivalomas, trunka dvejus metus (11 ir 12 vidurinės mokyklos ar gimnazijų III IV klasės). Mokiniai mokosi pagal VIDURINIO UGDYMAS Vidurinis ugdymas neprivalomas, trunka dvejus metus (11 ir 12 vidurinės mokyklos ar gimnazijų III IV klasės). Mokiniai mokosi pagal individualius ugdymosi planus. (Pagal vidurinio ugdymo

Detaliau

LIETUVOS RESPUBLIKOS ŪKIO MINISTRAS

LIETUVOS RESPUBLIKOS ŪKIO MINISTRAS LIETUVOS RESPUBLIKOS ENERGETIKOS MINISTERIJA 2014 2020 M. EUROPOS SĄJUNGOS FONDŲ INVESTICIJŲ VEIKSMŲ PROGRAMOS PRIORITETO ĮGYVENDINIMO PRIEMONIŲ ĮGYVENDINIMO PLANAS I SKYRIUS 2014 2020 M. EUROPOS SĄJUNGOS

Detaliau

PowerPoint Presentation

PowerPoint Presentation Lietuvos gyventojų nuomonė apie teisėsaugą ir teismus Dr. Eglė Vileikienė Vidaus reikalų ministerijos Viešojo saugumo politikos departamentas 2015-03-05 Tyrimo metodika Reprezentatyvi Lietuvos gyventojų

Detaliau

PowerPoint Presentation

PowerPoint Presentation Programų sistemų inžinerija 2018-02-07 Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt Klausytojai: Susipažinimas Išklausyti programų sistemų inžinerijos kursai Profesinė patirtis Dabar klausomi pasirenkami

Detaliau

LIETUVIŲ KALBOS IR LITERATŪROS MOKYKLINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

LIETUVIŲ KALBOS IR LITERATŪROS MOKYKLINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Projektas PATVRTNTA Nacionalinio egzaminų centro direktoriaus 08 m. lapkričio d. įsakymu Nr. (..)-V- LETUVŲ KALBOS R LTERATŪROS VALSTYBNO BRANDOS EGZAMNO UŽDUOTES VERTNMO KRTERJA. Literatūrinio rašinio

Detaliau

Microsoft Word - KLOM.doc

Microsoft Word - KLOM.doc Aptarnavimo instrukcija Valdymas ir duomenų vaizdavimas Pagrindinis jungiklis Pagrindinis jungiklis yra skirtas katilo įjungimui ar išjungimui. Jis yra katilo valdymo skydelyje (pozicija 6, pav. 1). Pirmąjį

Detaliau

PATVIRTINTA

PATVIRTINTA PATVIRTINTA Lietuvos Respublikos užsienio reikalų ministro 2012 m. gegužės 25 d. įsakymo Nr. V-91 (Lietuvos Respublikos užsienio reikalų ministro 2013 m. gruodis 19 d. įsakymo Nr. V-270 redakcija) ASOCIACIJŲ

Detaliau

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2016-02-15 Tiesinės duomenų struktūros Panagrinėsime keletą žinomų ir įvairiuose taikymuose naudojamų

Detaliau

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius reikės pasitelkti kūrybinį mąstymą ir pasinaudoti jau turimomis žiniomis, įgytomis per

Detaliau

AAA.AIEPI.Mokymu_medziaga_MOK_VI_07.Vandens_inventorizacijos_duomenu_tvarkymas.v.0.4

AAA.AIEPI.Mokymu_medziaga_MOK_VI_07.Vandens_inventorizacijos_duomenu_tvarkymas.v.0.4 Informacinės sistemos eksploatacinė dokumentacija AIVIKS MOKYMO MEDŽIAGA 07. Vandens inventorizacijos duomenų tvarkymas Aplinkos apsaugos agentūra Aplinkosauginės informacijos elektroninių paslaugų išvystymas

Detaliau

5_3 paskaita

5_3 paskaita EKONOMIKOS INŽINERIJA Parengė: doc. dr. Vilda Gižienė 4. PRODUKTO GAMYBOS TECHNOLOGIJA Temos: 4.7.Įmonės pelnas ir jo maksimizavimas 4.7.1. Konkuruojančios firmos pajamos. 4.7.2. Pelno maksimizavimas trumpuoju

Detaliau

Vilniaus Universiteto Žygeivių Klubas

Vilniaus Universiteto Žygeivių Klubas 2013 m. KKT varžybų Vilniaus universiteto taurei laimėti Trasų schemos ir aprašymai Atrankinės trasos Detalus atrankinių trasų aiškinimas bus varžybų dieną prieš startą. Startas bus bendras visoms komandoms,

Detaliau

Projektas

Projektas PATVIRTINTA Vytauto Didžiojo universiteto, Lietuvos agrarinių ir miškų mokslų centro Agronomijos mokslo krypties doktorantūros komiteto 2019 m. vasario 28 d. posėdžio Nr. 137 ATVIRO KONKURSO Į AGRONOMIJOS

Detaliau

131018_Ikimokyklinuka_uzd

131018_Ikimokyklinuka_uzd IKIMOKYKLINUKAI 2013 m. 1 užduotis Komandos prisistatymas (visa komanda) 2 užduotis (teorin ) (tik vaikai) - klausimai iš sveikos gyvensenos tematika - klausimai iš sveikos gyvensenos tematika (prie kiekvienos

Detaliau

~ ~ ALYTAUS REGIONO PLĖTROS TARYBA SPRENDIMAS DĖL ALYTAUS REGIONO PROJEKTŲ SĄRAŠŲ TIKSLINIMO PAGAL PRIEMONĘ "SAVIVALDYBIŲ INSTITUCIJŲ IR ĮSTAIGŲ DIRBA

~ ~ ALYTAUS REGIONO PLĖTROS TARYBA SPRENDIMAS DĖL ALYTAUS REGIONO PROJEKTŲ SĄRAŠŲ TIKSLINIMO PAGAL PRIEMONĘ SAVIVALDYBIŲ INSTITUCIJŲ IR ĮSTAIGŲ DIRBA ALYTAUS REGIONO PLĖTROS TARYBA SPRENDIMAS DĖL ALYTAUS REGIONO PROJEKTŲ SĄRAŠŲ TIKSLINIMO PAGAL PRIEMONĘ "SAVIVALDYBIŲ INSTITUCIJŲ IR ĮSTAIGŲ DIRBANČIŲJŲ KVALIFIKACIJOS TOBULINIMAS" 2011 m. lapkričio 3

Detaliau

Priedai

Priedai Priedai Priedas Nr. 3 Įvesti duomenys Na- smūgių dažnumas į 1km' Na= 2 v 4 4 C2= 1 - objekto konstrukcija L- objekto ilgis L= 24 C3= 1 - objekto vertė W- objekto plotis W= 12 C4= 1 - žmonių kiekis objekte

Detaliau

IŠVADOS MODIFIKAVIMAS

IŠVADOS MODIFIKAVIMAS PATVIRTINTA Audito komiteto 0 m. lapkričio d. nutarimu Nr..-0.7.. REKOMENDACIJA AUDITORIAUS IŠVADA IR JOS MODIFIKAVIMAS PAGAL TARPTAUTINIUS AUDITO STANDARTUS Šios rekomendacijos tikslas pateikti auditoriaus

Detaliau