PowerPoint Presentation

Dydis: px
Rodyti nuo puslapio:

Download "PowerPoint Presentation"

Transkriptas

1 Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF

2

3 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti. Vienintelė pastaba/pageidavimas: Studentai norėtų, kad dėstytojas labiau akcentuotų svarbiausius dalykus, kurie reikalingi rašant programas, paaiškintų ko tikisi ir užrašytų tai prie užduoties ar paskelbtų tokią informaciją savo internetiniame puslapyje. Taip būtų lengviau parašyti programą, kuri atitiktų dėstytojo reikalavimus. tokia idėja: reikia aktyviau bendrauti su užsakovu (pratybų dėstytoju)

4 P ir NP uždavinių sampratos Intuityvi ir formali sampratos iš esmės skiriasi Ką tradiciškai reiškia pasakymas uždavinys yra NP? Ką iš tikrųjų reiškia pasakymas uždavinys yra NP? Situacija panaši į sąvokų žmogus ir žinduolis naudojimą

5 Apibrėžimai Pradinių duomenų dydis skaičius bitų, reikalingų šiems duomenims užkoduoti. Remiamės prielaida, kad naudojamas tinkamas kodavimas: simboliams užkoduoti naudojamas fiksuotas bitų skaičius, o sveikam skaičiui M>0 užkoduoti naudojame ne daugiau kaip c logm bitų, kur c>0 yra konstanta. Algoritmo A vykdymo laikas blogiausiu atveju yra max( t(n) visoms galimoms n bitų kombinacijoms) kur t(n) yra algoritmo A vykdymo laikas su pradiniais duomenimis n.

6 Ryšys tarp duomenų ir atminties Algoritmas yra c-augantis (c-incremental), jei visų jo primityvių operacijų su vienu ar dviem objektais, vaizduojamais b bitų, rezultatas yra objektas, kurio pavaizdavimui reikia ne daugiau kaip b+c bitų, kur c 0 yra konstanta. Lema. Jei c-augančio A algoritmo vykdymo laikas blogiausiu atveju yra t(n) atžvilgiu pradinių duomenų elementų skaičiaus N, tai algoritmo A vykdymo laikas yra O(n 2 t(n)) atžvilgiu pradinių duomenų neelementariam kodavimui reikalingų bitų skaičiaus n.

7 Sprendimo priėmimo (klasifikavimo) uždaviniai Sprendimo priėmimo (klasifikavimo) uždaviniai yra uždaviniai, kurių atsakymas yra taip arba ne (arba bitas su reikšme 0 arba 1). Pavyzdžiai: Ar fragmentas P yra simbolių eilutėje T? Ar dviejų aibių S ir T sankirta yra tuščia? Ar duotame grafe su svoriais G iš viršūnės A į viršūnę B egzistuoja kelias, kurio svoris nedidesnis nei k? Jei parodysime, jog sprendimo priėmimo (klasifikavimo) uždavinys yra sudėtingas, tai reikš, kad atitinkamas optimizavimo uždavinys irgi yra sudėtingas.

8 Uždaviniai ir kalbos Algoritmas A pripažįsta (accept) duomenų eilutę x, jei jo rezultatas su pradiniais duomenimis x yra taip. Eilučių aibė dažnai vadinama kalba (language). Algoritmas A pripažįsta kalbą L, jei kiekvienam x L algoritmas A duoda atsakymą taip ir duoda atsakymą ne kitais atvejais. Taigi sprendimo priėmimo (klasifikavimo) uždavinį atitinka kalba L.

9 Sudėtingumo klasė P Sudėtingumo klasė P yra aibė visų sprendimo priėmimo (klasifikavimo) uždavinių arba kalbų L, kurių pripažinimui blogiausiu atveju reikia polinominio vykdymo laiko. T.y. egzistuoja algoritmas A toks, kad jei x L, tai A duoda rezultatą taip per laiką p(n), kur n yra x dydis, o p(n) yra polinomas. L papildinys (complement) aibė visų dvejetainių eilučių, nepriklausančių L. Jei kalba L, atitinkanti kažkokį sprendimo priėmimo uždavinį, priklauso P, tai ir L papildinys priklauso P (kodėl?).

10 Nederminuota operacija pasirinkti(b): operacija nedeterminuotu būdu pasirenka bitą (reikšmę 0 arba 1) ir priskiria ją b. Kai algoritmas A naudoja primityvią operaciją pasirinkti, A vadinamas nedeterministiniu algoritmu. Sakysime, kad algoritmas A nedeterministiškai pripažįsta duomenų eilutę x, jei egzistuoja pasirinkti kreipinių, kuriuos A gali atlikti su pradiniais duomenimis x, rezultatų aibė tokia, kad A duos rezultatą taip. Algoritmas A, žinoma, gali naudoti ir kitas (deterministines) operacijas.

11 Sudėtingumo klasė NP Sudėtingumo klasė NP yra aibė sprendimo priėmimo uždavinių arba kalbų L, kurios gali būti nedeterministiškai pripažįstamos per polinominį laiką. T.y. egzistuoja nedeterministinis algoritmas A toks, kad jei x L, tai algoritme A yra pasirinkti kreipinių rezultatų aibė, kad A duoda atsakymą taip per laiką p(n), kur n yra x dydis, o p(n) yra polinomas. Jei kalba L priklauso NP, L papildinys nebūtinai priklauso NP (kodėl?). Sudėtingumo klasė co-np, sudaryta iš visų kalbų, kurių papildiniai priklauso klasei NP, ir daugelis mokslininkų tiki, kad co-np NP.

12 Alternatyvus apibrėžimas Kalba L gali būti patikrinta algoritmu A, jei bet kokiai duomenų eilutei x L yra kita duomenų eilutė y tokia, kad pradiniams duomenims z= x +y algoritmas A duos atsakymą taip. Eilutė y vadinama buvimo L sertifikatu. Sudėtingumo klasė NP yra aibė L apibrėžiančių sprendimo priėmimo uždavinius kalbų, kurios gali būti patikrintos per polinominį laiką. T.y. egzistuoja (deterministinis) algoritmas A toks, kad kiekvienam x L, naudodamas kažkokį sertifikatą y, jis patikrina, kad iš tikrųjų x L per polinominį laiką p(n), įskaitant laiką, sugaištamą z= x +y nuskaitymui, kur n yra x dydis.

13 Apibrėžimų ekvivalentumas Teorema. Kalba L gali būti (deterministiškai) patikrinta per polinominį laiką tada ir tik tada, kai L gali būti nedeterministiškai pripažinta per polinominį laiką.

14 P= NP problema Nėra formaliai įrodyta, ar P = NP, ar ne. Netgi nėra žinoma, ar P = NP co-np, ar ne. Yra manoma, kad P skiriasi tiek nuo NP, tiek nuo co- NP, tiek nuo jų sankirtos. Iš tikrųjų, toliau aptariami NP uždaviniai, kurie manoma nepriklauso P, t.y. nėra žinomas polinominis jų sprendimo algoritmas.

15 Hamiltono ciklas Hamiltono ciklo uždavinys yra nustatyti, ar duotame grafe G egzistuoja paprastas ciklas, apeinantis visas viršūnes tik vieną kartą ir grįžtantis į pradinę viršūnę. Toks ciklas vadinamas grafo G Hamiltono ciklu. Lema. Hamiltono ciklo uždavinys yra NP.

16 Loginė grandinė Loginiai elementai NOT OR AND

17 Loginė grandinė (2) Loginės grandinės tenkinimo uždavinys duotai loginei grandinei su vienu rezultatu turi nustatyti, ar egzistuoja pradiniai duomenys, su kuriais rezultatas yra 1. Tokie pradiniai duomenys vadinami tenkinančiais. Lema. Loginės grandinės tenkinimo uždavinys yra NP.

18 Viršūnių denginys Duotam grafui G viršūnių denginys (vertex cover) yra poaibis jo viršūnių C toks, kad kiekvienai grafo G briaunai (v i, v j ) v i C arba v j C (galbūt, abi). Optimizavimo tikslas surasti, kiek galima mažesnį viršūnių denginį. Viršūnių denginio sprendimo priėmimo uždavinys duotam grafui G ir sveikam skaičiui k turi atsakyti, ar egzistuoja viršūnių denginys, sudarytas iš ne daugiau kaip k viršūnių. Lema. Viršūnių denginio uždavinys yra NP.

19 Polinominis redukavimas Kalba L, apibrėžianti sprendimo priėmimo uždavinį, yra polinomiškai redukuojama į kalbą M, jei egzistuoja polinominio sudėtingumo funkcija f, kuri L pradinius duomenis x transformuoja į M pradinius duomenis f(x) taip, kad x L tada ir tik tada, kai f(x) M. Galima žymėti L poly M.

20 NP pilnumas M yra NP-sunki (NP-hard), jei kiekvienai L NP, L poly M. Jei be to pati M NP, tai M yra NP-pilna. Jei kas nors parodytų, kad NP-pilnai problemai egzistuoja polinominis algoritmas, tai automatiškai reikštų kad visa NP klasė išsprendžiama per polinominį laiką, t.y. P=NP.

21 Cook-Levin teorema Teorema (Cook-Levin teorema). Loginės grandinės tenkinimo uždavinys yra NP-pilnas.

22 NP-pilnų uždavinių pavyzdžiai Viršūnių denginio ir Hamiltono ciklo uždaviniai yra NPpilni. Duotam grafui G uždara grupė (clique) yra poaibis jo viršūnių C toks, kad kiekvienai porai v i C, v j C, v i v j egzistuoja grafo G briauna (v i, v j ), t.y. kiekviena skirtingų viršūnių iš C pora yra sujungta briauna. Optimizavimo tikslas surasti, kiek galima didesnę uždarą grupę. Įrodyta, kad uždaros grupės uždavinys yra NPpilnas.

23 NP-pilnų uždavinių pavyzdžiai (2) Kuprinės uždavinys: duota aibė S daiktų, sunumeruotų nuo 1 iki n. Kiekvienas daiktas i turi dydį (svorį) s i ir kainą k i ; duotai kuprinės talpai T reikia rasti aibę į ją telpančių daiktų su bendra didžiausia kaina, t.y. aibę S S tokią, kad SUM(s i, i S ) T ir SUM(k i, i S ) maksimali. Įrodyta, kad kuprinės uždavinys yra NP-pilnas.

24 Klausimai?

25 Kokios praktinės problemos su NP uždaviniais?

26

27 Egzamino klausimo pavyzdys Kiek briaunų turi medis su N viršūnių? N-1 N 2N-1 2N priklauso nuo medžio

28 Egzamino klausimo pavyzdys Koks geriausiu atveju yra rikiavimo sujungimu (merge sort) algoritmo sudėtingumas? O(N) O(logN) O(N logn) O(N 2 ) O(N 2 logn)

29 Egzamino klausimo pavyzdys Nupieškite dvejetainį paieškos medį, kuris bus sukonstruotas eilės tvarka įterpus tokias reikšmes: halibut, haddock, carp, salmon, cod, tuna, sardine, char, trout

30 Egzamino klausimo pavyzdys Nupieškite dvejetainį medį (ne paieškos), jei jo apėjimo pagal 2 strategijas rezultatai tokie: Viršūnė-Kairė-Dešinė: 4, 2, 9, 6, 5, 7, 8 Kairė-Dešinė-Viršūnė: 9, 6, 2, 7, 8, 5, 4

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to

Detaliau

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej

Detaliau

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2016-02-15 Tiesinės duomenų struktūros Panagrinėsime keletą žinomų ir įvairiuose taikymuose naudojamų

Detaliau

Algoritmø analizës specialieji skyriai

Algoritmø analizës specialieji skyriai VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo

Detaliau

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem. 2018 m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta grafų algoritmams, tačiau apibrėžus gretimumo matricą

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 2 paskaita 2019-02-13 Algoritmo sąvoka Algoritmas tai tam tikra veiksmų seka, kurią reikia atlikti norint gauti rezultatą. Įvesties duomenys ALGORITMAS Išvesties duomenys

Detaliau

DB sukūrimas ir užpildymas duomenimis

DB sukūrimas ir užpildymas duomenimis DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio

Detaliau

Microsoft PowerPoint Dvi svarbios ribos [Read-Only]

Microsoft PowerPoint Dvi svarbios ribos [Read-Only] Dvi svarbios ribos Nykstamųjų funkcijų palyginimas. Ekvivalenčios nykstamosios funkcijos. Funkcijos tolydumo taške apibrėžimas. Tolydžiųjų funkcijų atkarpoje savybės. Trūkiosios funkcijos. Trūko taškų

Detaliau

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul lgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7. pibr eµzimas. Matrica yra m eiluµciu¾ir n stulpeliu¾turinti staµciakamp e lentel e su joje i¾rašytais

Detaliau

lec10.dvi

lec10.dvi paskaita. Euklido erdv_es. pibr_ezimas. Vektorin_e erdv_e E virs realiuju skaiciu kuno vadinama Euklido erdve, jeigu joje apibr_ezta skaliarin_e sandauga, t.y. tokia funkcija, kuri vektoriu porai u; v

Detaliau

10 Pratybos Oleg Lukašonok 1

10 Pratybos Oleg Lukašonok 1 10 Pratybos Oleg Lukašonok 1 2 Tikimybių pratybos 1 Lema Lema 1. Tegul {Ω, A, P} yra tikimybinė erdvė. Jeigu A n A, n N, tai i) P (lim sup A n ) = P ( k=1 n=k A n ) = lim P ( n k n=ka n ), nes n=ka n monotoniškai

Detaliau

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis

Detaliau

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų Atranka į 019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų skaičių seką a 1, a, a 3,..., o tada apibrėžė naują

Detaliau

PS_riba_tolydumas.dvi

PS_riba_tolydumas.dvi Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos

Detaliau

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa III SVEIKI NENEIGIAMI SKAIČIAI 31 Indukcijos aksioma Natūraliu aibės sa voka viena svarbiausiu matematikoje Nors natūralaus skaičiaus sa voka labai sena, bet šio skaičiaus buveinės sa voka buvo suformuluota

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje

Detaliau

Neiškiliojo optimizavimo algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį

Neiškiliojo optimizavimo  algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį Neiškiliojo optimizavimo algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį. Albertas Gimbutas 2018 m. birželio 19 d. Vadovas: Prof. habil. dr. Antanas

Detaliau

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l 9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios

Detaliau

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra

Detaliau

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr Studijų programos aprašas Studijų programos pavadinimas Informatika Aukštojo mokslo institucija (-os), padalinys (-iai) Vilniaus universitetas, Matematikos ir informatikos fakultetas, Informatikos katedra

Detaliau

PowerPoint Presentation

PowerPoint Presentation KAIP FORMUOJAMASIS VERTINIMAS PADEDA SIEKTI INDIVIDUALIOS PAŽANGOS: REFLEKSIJA KOKYBĖS SIEKIANČIŲ MOKYKLŲ KLUBO KONFERENCIJA MOKINIŲ UGDYMO(SI) PASIEKIMAI. SAMPRATA IR SKATINIMO GALIMYBĖS Doc. dr. Viktorija

Detaliau

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s},

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, B 1 = {{i, p}, {i, e}, {z, e}, {u, e}, {u, s}}. Grafai

Detaliau

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali VI TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 61 Teoremos apie tolydžiu tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami realiu ju skaičiu savybes atkreipėme dėmesi i tokia šios aibės elementu

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 12 paskaita 2019-05-08 Norint kažką sukonstruoti, reikia... turėti detalių. 13 paskaitos tikslas Susipažinti su python modulio add.py 1.1 versija. Sukurti skaitmeninį modelį

Detaliau

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3)

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių 11-12 klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) 4, 4 (5 6) 7, 7 (8 9) 10,..., 2014 (2015 2016) 2017.

Detaliau

Kauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė i

Kauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė i Kauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė ikimokyklinio ir priešmokyklinio amžiaus ir jaunesnio

Detaliau

DBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas

DBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas DBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas Seminaro tikslai Trumpai apžvelgti pagrindinius DBVS komponentus Detaliai nagrinėjami optimalaus duomenų dėstymo

Detaliau

MatricosDetermTiesLS.dvi

MatricosDetermTiesLS.dvi MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas

Detaliau

Isvestiniu_taikymai.dvi

Isvestiniu_taikymai.dvi IŠVESTINIŲ TAIKYMAI Pagrindinės analizės teoremos Monotoninės funkcijos išvestinė Funkcijos ekstremumai Funkcijos didžiausia ir mažiausia reikšmės intervale Kreivės iškilumas Funkcijos grafiko asimptotės

Detaliau

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant

Detaliau

Dažniausios IT VBE klaidos

Dažniausios IT VBE klaidos Dažniausios IT VBE klaidos Renata Burbaitė renata.burbaite@gmail.com Kauno technologijos universitetas, Panevėžio Juozo Balčikonio gimnazija 1 Egzamino matrica (iš informacinių technologijų brandos egzamino

Detaliau

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee 001 x 1 2 + x + 12 lim x 4 2x 1 2; 0; 2 1 2; 5 1; 6 2; ; 1 2 4 riba neegzistuoja; 14x 2 2 + 29 lim x 1x 2 + 4x + 9 1 1; 2 29 9 ; ; 4 0; 5 riba neegzistuoja; 6 1 14; 14 1; 14 x + 1 lim x 4 x 4 1 riba neegzistuoja;

Detaliau

QR algoritmas paskaita

QR algoritmas paskaita Turinys QR algoritmas 4 paskaita Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 4 5 TA skaitiniai metodai ( MIF VU) Tiesinių lygčių sistemų sprendimas / 40 TA skaitiniai

Detaliau

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS ALEKSANDRO STULGINSKIO UNIVERSITETAS Agronomijos fakultetas Žemdirbystės katedra STUDIJŲ DALYKO APRAŠAS Dalyko kodas: AFŽEB07E Pavadinimas lietuvių kalba: Mokslinių tyrimų metodika Pavadinimas anglų kalba:

Detaliau

Printing triistr.wxmx

Printing triistr.wxmx triistr.wxmx / Triįstrižainių lygčių sistemų sprendimas A.Domarkas, VU, Teoriją žr. []; [], 7-7; []. Pradžioje naudosime Gauso algoritmą, kuriame po įstrižaine daromi nuliai. Po to grįždami į viršų virš

Detaliau

PowerPoint Presentation

PowerPoint Presentation PARAIŠKOS DĖL PROJEKTO FINANSAVIMO PILDYMAS IR TEIKIMAS Indrė Dagilienė 2018 m. spalio 25-26 d. Vilnius-Kaunas Paraiškos pildymas Paraiška pildoma vadovaujantis projektų finansavimo sąlygų Aprašo Nr. 4

Detaliau

UGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ

UGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ UGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ VADOVĖLIŲ TURINIO VERTINIMO TVARKOS APRAŠO PATVIRTINIMO

Detaliau

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V L I T U V O S J U N Ų J Ų T T I K Ų O K Y K L. TRIKPIŲ ČVINOS (017 019) Teorinę medžiagą parengė ir antrąją užduotį sudarė Vilniaus universiteto docentas dmundas azėtis atematikos pamokose nagrinėjamos

Detaliau

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 2007 m. rugsėjo 6 d. įsakymu Nr. ISAK-1790 VERSLO IR VADYBOS TECHNOLOGIJŲ BENDROJI PROGRAMA MOKINIAMS, BESIMOKANTIEMS PAGAL VIDURINIO UGDYMO

Detaliau

Microsoft Word - KMAIK dėstytojų konkurso ir atestacijos aprašas (3)

Microsoft Word - KMAIK dėstytojų konkurso ir atestacijos aprašas (3) PATVIRTINTA: Kauno miškų ir aplinkos inžinerijos kolegijos Direktoriaus 2011-05-19 įsakymu Nr. 1-119 KAUNO MIŠKŲ IR APLINKOS INŽINERIJOS KOLEGIJOS DĖSTYTOJŲ ATESTAVIMO BEI KONKURSŲ EITI PAREIGAS ORGANIZAVIMO

Detaliau

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų

Detaliau

PATVIRTINTA Muitinės mokymo centro direktoriaus 2018 m. rugsėjo 6 d. įsakymu Nr. 1B-59 ASMENŲ, PAGEIDAUJANČIŲ TEIKTI ATSTOVAVIMO MUITINĖJE PASLAUGAS L

PATVIRTINTA Muitinės mokymo centro direktoriaus 2018 m. rugsėjo 6 d. įsakymu Nr. 1B-59 ASMENŲ, PAGEIDAUJANČIŲ TEIKTI ATSTOVAVIMO MUITINĖJE PASLAUGAS L PATVIRTINTA Muitinės mokymo centro direktoriaus 2018 m. rugsėjo 6 d. įsakymu Nr. 1B-59 ASMENŲ, PAGEIDAUJANČIŲ TEIKTI ATSTOVAVIMO MUITINĖJE PASLAUGAS LIETUVOS RESPUBLIKOS TERITORIJOJE, MOKYMO PROGRAMA I

Detaliau

Microsoft Word - Awalift 80 Manual_LT.doc

Microsoft Word - Awalift 80 Manual_LT.doc Nuotekų perpumpavimo įrenginys su nešmenų atskyrimu Awalift 80 Instaliavimo ir naudojimo instrukcija Puslapis 1 / 9 Bendra informacija Nuotekų perpumpavimo įrenginiai naudojami kai nuotekų vamzdis yra

Detaliau

INSTITUCIJOS, VYKDANČIOS MOKYTOJŲ IR ŠVIETIMO PAGALBĄ TEIKIANČIŲ SPECIALISTŲ KVALIFIKACIJOS TOBULINIMĄ, 2013 METŲ VEIKLOS ĮSIVERTINIMO IŠVADOS 1. Inst

INSTITUCIJOS, VYKDANČIOS MOKYTOJŲ IR ŠVIETIMO PAGALBĄ TEIKIANČIŲ SPECIALISTŲ KVALIFIKACIJOS TOBULINIMĄ, 2013 METŲ VEIKLOS ĮSIVERTINIMO IŠVADOS 1. Inst INSTITUCIJOS, VYKDANČIOS MOKYTOJŲ IR ŠVIETIMO PAGALBĄ TEIKIANČIŲ SPECIALISTŲ KVALIFIKACIJOS TOBULINIMĄ, 2013 METŲ VEIKLOS ĮSIVERTINIMO IŠVADOS 1. Institucijos pavadinimas Kretingos rajono pedagogų švietimo

Detaliau

VISŲ TIPŲ IR GAMINTOJŲ MEMBRANINIAI DUJŲ SKAITIKLIAI 1. Skaitiklių savybės. Visų tipų ir gamintojų membraniniai dujų skaitikliai indikuoja vieną rodme

VISŲ TIPŲ IR GAMINTOJŲ MEMBRANINIAI DUJŲ SKAITIKLIAI 1. Skaitiklių savybės. Visų tipų ir gamintojų membraniniai dujų skaitikliai indikuoja vieną rodme VISŲ TIPŲ IR GAMINTOJŲ MEMBRANINIAI DUJŲ SKAITIKLIAI 1. Skaitiklių savybės. Visų tipų ir gamintojų membraniniai dujų skaitikliai indikuoja vieną rodmenį. Jeigu įrengtas tik membraninis dujų skaitiklis,

Detaliau

Programų sistemų inžinerija Saulius Ragaišis, VU MIF

Programų sistemų inžinerija Saulius Ragaišis, VU MIF Programų sistemų inžinerija 2014-02-12 Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt SWEBOK evoliucija Nuo SWEBOK Guide to the Software Engineering Body of Knowledge, 2004 Version. IEEE, 2004. prie

Detaliau

Nexa serija Stūmokliniai ir hidrauliniai dozavimo siurbliai su dviguba diafragma UAB Elega, Žalgirio , Vilnius, LT 08217, Lietuva, Tel:

Nexa serija Stūmokliniai ir hidrauliniai dozavimo siurbliai su dviguba diafragma UAB Elega, Žalgirio , Vilnius, LT 08217, Lietuva, Tel: Nexa serija Stūmokliniai ir hidrauliniai dozavimo siurbliai su dviguba diafragma UAB Elega, Žalgirio 131-211, Vilnius, LT 08217, Lietuva, Tel: +370 5 2 715444; tel./faksas: +370 5 2 715445; mob. tel.:

Detaliau

Microsoft Word - DSEA-3s.doc

Microsoft Word - DSEA-3s.doc 3. Rūšiavimo algoritmai Rūšiavimas yra viena iš bazinių kompiuterių darbo operacijų kompiuteris vidutiniškai apie 25 procentus viso skaičiavimo laiko sunaudoja rūšiavimui. Rūšiavimo kaip algoritmo tikslas

Detaliau

PS Testavimo ir konfigūravimo valdymas Užduotis nr. 1. Karolis Brazauskas Mindaugas Rekevičius Jonas Riliškis Eugenijus Sabaliauskas

PS Testavimo ir konfigūravimo valdymas Užduotis nr. 1. Karolis Brazauskas Mindaugas Rekevičius Jonas Riliškis Eugenijus Sabaliauskas PS Testavimo ir konfigūravimo valdymas Užduotis nr. 1. Karolis Brazauskas Mindaugas Rekevičius Jonas Riliškis Eugenijus Sabaliauskas 2014-10-01 IT Kompanija Dirbame pagal užsakymus, daugiausiai 2 projektai

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 3 paskaita 2019-02-20 2 paskaitos papildymas Realaus skaičiaus konvertavimas į kitą skaičiavimo sistemą Pirminių dvynių paieškos algoritmas Tiesinio sąrašo realizacija,

Detaliau

Slide 1

Slide 1 Tarptautinės studijos iššūkis visai akademinei bendruomenei Dr. Laura Sapranavičiūtė-Zabazlajeva, LSMU, TRSC, Užsieniečių studijų skyriaus vedėja 25 metų patirtis 682 studentai Tarptautinės studijos LSMU

Detaliau

PATVIRTINTA Lietuvos banko valdybos 2015 m. sausio 29 d. nutarimu Nr (Lietuvos banko valdybos 2018 m. spalio 30 d. nutarimo Nr redakcij

PATVIRTINTA Lietuvos banko valdybos 2015 m. sausio 29 d. nutarimu Nr (Lietuvos banko valdybos 2018 m. spalio 30 d. nutarimo Nr redakcij PATVIRTINTA Lietuvos banko valdybos 2015 m. sausio 29 d. nutarimu Nr. 03-10 (Lietuvos banko valdybos 2018 m. spalio 30 d. nutarimo Nr. 03-202 redakcija) PRIĖMIMO Į TARNYBĄ LIETUVOS BANKE TVARKOS APRAŠAS

Detaliau

Microsoft Word - T-Krivousas_magistrinis.doc

Microsoft Word - T-Krivousas_magistrinis.doc KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS PROGRAMŲ INŽINERIJOS KATEDRA Tomas Krivoūsas Verifikavimo algoritmų panaudojimas analizuojant formalių PLA specifikacijų teisingumą Magistro darbas

Detaliau

(Microsoft Word - Pasiruo\360imas EE 10 KD-1)

(Microsoft Word - Pasiruo\360imas EE 10  KD-1) -as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.

Detaliau

NEPRIKLAUSOMO AUDITORIAUS IŠVADA VŠĮ Vilniaus Žirmūnų darbo rinkos mokymo centras steigėjams, vadovybei Nuomonė Mes atlikome VŠĮ Vilniaus Žirmūnų darb

NEPRIKLAUSOMO AUDITORIAUS IŠVADA VŠĮ Vilniaus Žirmūnų darbo rinkos mokymo centras steigėjams, vadovybei Nuomonė Mes atlikome VŠĮ Vilniaus Žirmūnų darb NEPRIKLAUSOMO AUDITORIAUS IŠVADA VŠĮ Vilniaus Žirmūnų darbo rinkos mokymo centras steigėjams, vadovybei Nuomonė Mes atlikome VŠĮ Vilniaus Žirmūnų darbo rinkos mokymo centras (toliau Įstaiga) finansinių

Detaliau

PRIEINAMAS TURIZMAS-TURIZMAS VISIEMS UNIVERSALUS DIZAINAS: TEORIJA IR PRAKTIKA

PRIEINAMAS TURIZMAS-TURIZMAS VISIEMS  UNIVERSALUS DIZAINAS: TEORIJA IR PRAKTIKA PRIEINAMAS TURIZMAS-TURIZMAS VISIEMS UNIVERSALUS DIZAINAS: TEORIJA IR PRAKTIKA RAMUNĖ STAŠEVIČIŪTĖ ARCHITEKTĖ KU DOCENTĖ 2018.10.18, KLAIPĖDA UNIVERSALUS DIZAINAS TAI TOKS GAMINIŲ IR APLINKOS KŪRIMAS (PROJEKTAVIMAS),

Detaliau

Projektas

Projektas PATVIRTINTA Kauno technologijos universiteto Lietuvos socialinių tyrimų centro Vytauto Didžiojo universiteto Sociologijos mokslo krypties doktorantūros komiteto 2019 m. gegužės 8 d. posėdžio nutarimu Nr.

Detaliau

Standartinių gamybinių operacijų brėžiniai, sutartiniai žymėjimai 1

Standartinių gamybinių operacijų brėžiniai, sutartiniai žymėjimai 1 Standartinių gamybinių operacijų brėžiniai, sutartiniai žymėjimai 1 TURINYS 1. Gręžimas lankstams: 1.1 2-iejų skylių gręžimas durelėms 80mm atstumu...3 1.2 2-iejų skylių gręžimas durelėms 100mm atstumu...5

Detaliau

Microsoft Word - 15_paskaita.doc

Microsoft Word - 15_paskaita.doc 15 PASKAITA Turinys: Išimtys Išimtys (exceptions) programos vykdymo metu kylančios klaidingos situacijos, nutraukiančios programos darbą (pavyzdžiui, dalyba iš nulio, klaida atveriant duomenų failą, indekso

Detaliau

Techninis aprašymas SONOMETER TM 1100 Ultragarsinis kompaktiškas energijos skaitiklis Aprašymas / taikymas MID tikrinimo sertifikato nr.: DE-10-MI004-

Techninis aprašymas SONOMETER TM 1100 Ultragarsinis kompaktiškas energijos skaitiklis Aprašymas / taikymas MID tikrinimo sertifikato nr.: DE-10-MI004- SONOMETER TM 1100 Ultragarsinis kompaktiškas energijos skaitiklis Aprašymas / taikymas MID tikrinimo sertifikato nr.: DE-10-MI004-PTB003 SONOMETER 1100 tai ultragarsinis statinis kompaktiškas energijos

Detaliau

Projektas

Projektas 1 PRIEDAS PATVIRTINTA Vytauto Didžiojo universiteto Menotyros mokslo krypties doktorantūros komiteto 2019 m. gegužės 28 d. posėdžio nutarimu Nr.1 ATVIRO KONKURSO Į MENOTYROS MOKSLO KRYPTIES DOKTORANTŪROS

Detaliau

Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i

Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas int Suma (int X[], int n) int s = 0; s = s + X[i]; return s; double Suma (double X[], int

Detaliau

Diskinės sėjamosios FALCON Kokybiška sėja bet kokiomis sąlygomis Моdulinė sistema Didelė talpa sėklai Mažas traukiamosios galios poreikis Pagrindinė t

Diskinės sėjamosios FALCON Kokybiška sėja bet kokiomis sąlygomis Моdulinė sistema Didelė talpa sėklai Mažas traukiamosios galios poreikis Pagrindinė t Diskinės sėjamosios FALCON Kokybiška sėja bet kokiomis sąlygomis Моdulinė sistema Didelė talpa sėklai Mažas traukiamosios galios poreikis Pagrindinė technologinė agregato paskirtis: Skirta minimalizuotoms

Detaliau

LIETUVOS RESPUBLIKOS AZARTINIŲ LOŠIMŲ ĮSTATYMO NR. IX-325 2, 10, 15, 16, 29 STRAIPSNIŲ PAKEITIMO IR ĮSTATYMO PAPILDYMO 15 1, 16 1 STRAIPSNIAIS ĮSTATYM

LIETUVOS RESPUBLIKOS AZARTINIŲ LOŠIMŲ ĮSTATYMO NR. IX-325 2, 10, 15, 16, 29 STRAIPSNIŲ PAKEITIMO IR ĮSTATYMO PAPILDYMO 15 1, 16 1 STRAIPSNIAIS ĮSTATYM LIETUVOS RESPUBLIKOS AZARTINIŲ LOŠIMŲ ĮSTATYMO NR. IX-325 2, 10, 15, 16, 29 STRAIPSNIŲ PAKEITIMO IR ĮSTATYMO PAPILDYMO 15 1, 16 1 STRAIPSNIAIS ĮSTATYMAS 2017 m. lapkričio 21 d. Nr. XIII-771 Vilnius 1 straipsnis.

Detaliau

Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ

Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #include main() int mas[100]; int k; for (int

Detaliau

Printing AtvirkstineMatrica.wxmx

Printing AtvirkstineMatrica.wxmx AtvirkstineMatrica.wxmx / Atvirkštinė matrica A.Domarkas, VU, Teoriją žr. [], 8-; []. Figure : Toliau pateiksime atvirkštinės matricos apskaičiavimo būdus su CAS Maxima. su komanda invert pavyzdys. [],

Detaliau

Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis

Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis Klaidų apdorojimas C kalboje If (kazkokia_salyga) { klaidos_apdorojimas(); return... } Tokio kodo apimtis galėdavo sekti iki 70-80proc. Klaidų/išimčių

Detaliau

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo XI skyrius KŪNAI 1 Kūno sa voka 1 1 Šiame skyriuje nagrinėsime kūnus Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijos dėsniai, žymimi + ir, ir vadinami aibės k elementu sudėtimi

Detaliau

Vilniaus Universiteto Žygeivių Klubas

Vilniaus Universiteto Žygeivių Klubas 2013 m. KKT varžybų Vilniaus universiteto taurei laimėti Trasų schemos ir aprašymai Atrankinės trasos Detalus atrankinių trasų aiškinimas bus varžybų dieną prieš startą. Startas bus bendras visoms komandoms,

Detaliau

Foresta

Foresta Vilnius, 2010 m. balandžio 21 d. Asociacija Draudimo brokerių rūmai Algirdo g. 9A, Vilnius, Lietuva 2009 m. gruodžio 31 d. metinių finansinių ataskaitų rinkinys bei Auditoriaus išvada ir Audito ataskaita

Detaliau

ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas

ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas Turinys 1 Skaičiavimo sistemos 3 11 Sveikųjų dešimtainių skaičių išreiškimas dvejetaine, aštuntaine

Detaliau

Elektroninių pažymėjimų tvarkymo sistema

Elektroninių pažymėjimų tvarkymo sistema Data: 2019-09-16 Valstybinio socialinio draudimo fondo valdyba Turinys 1. Įžanga... 3 1.1. Dokumento tikslas... 3 1.2. Terminai ir santrumpos... 3 2. Perskaitykite pirmiausia... 4 2.1. Ką rasite šiame

Detaliau

Mažeikių r. Tirkšlių darželio „Giliukas“ metinio veiklos vertinimo pokalbio su darbuotoju tvarkos aprašas

Mažeikių r. Tirkšlių darželio „Giliukas“ metinio veiklos vertinimo pokalbio su darbuotoju tvarkos aprašas PATVIRTINTA Mažeikių r. Tirkšlių darželio Giliukas: Direktoriaus 2017 m. vasario 22 d. įsakymu Nr. V1-8 METINIO VEIKLOS VERTINIMO POKALBIO SU DARBUOTOJU TVARKOS APRAŠAS I. SKYRIUS ĮVADINĖ DALIS 1. Metinio

Detaliau

Profesinio orientavimo projektas Studentų ugdymas karjerai studento karjeros sėkmės link (Nr. EG ) Į(SI)DARBINIMO FORMOS NAUDINGOS NUORODOS IR

Profesinio orientavimo projektas Studentų ugdymas karjerai studento karjeros sėkmės link (Nr. EG ) Į(SI)DARBINIMO FORMOS NAUDINGOS NUORODOS IR Į(SI)DARBINIMO FORMOS NAUDINGOS NUORODOS IR INFORMACIJA Darbo rinkoje egzistuoja įvairios į(si)darbinimo formos, todėl jaunam žmogui lengva pasimesti ir susipainioti tarp terminų ir įdarbinimo formų. Todėl

Detaliau

PowerPoint Presentation

PowerPoint Presentation Programos etwinning galimybės Erasmus+ KA2 projektuose Loreta Tarvydienė Vilnius, 2019-01-22 Tūkstančio mylių kelionė prasideda nuo vieno žingsnelio. Laozi (kinų filosofas) Programa etwinning Programa

Detaliau

MAGENTO 1.9 OMNIVA MODULIO DIEGIMO INSTRUKCIJA

MAGENTO 1.9 OMNIVA MODULIO DIEGIMO INSTRUKCIJA MAGENTO 1.9 OMNIVA MODULIO DIEGIMO INSTRUKCIJA Turinys MODULIO FUNKCIONALUMAS... 3 NAUDOJAMI TERMINAI IR SĄVOKOS... 3 REKOMENDUOJAMI NAUDOTI ĮRANKIAI... 3 ELEKTRONINĖS PARDUOTUVĖS REIKALAVIMAI... 3 SERVERIO

Detaliau

Įžanga apie privatumą Dalyviai tyrinės tai, kaip jie patys suvokia privatumą ir kokį poveikį jis daro jų gyvenimams. Dalyviai apžvelgs informacijos, k

Įžanga apie privatumą Dalyviai tyrinės tai, kaip jie patys suvokia privatumą ir kokį poveikį jis daro jų gyvenimams. Dalyviai apžvelgs informacijos, k Įžanga apie privatumą Dalyviai tyrinės tai, kaip jie patys suvokia privatumą ir kokį poveikį jis daro jų gyvenimams. Dalyviai apžvelgs informacijos, kurią jie norėtų išlaikyti privačią, tipus ir kontekstus,

Detaliau

Banko_paslaugu_internetu_teikimo_salygos_

Banko_paslaugu_internetu_teikimo_salygos_ Banko paslaugų internetu teikimo sąlygos 1. Banko paslaugos internetu tai AB SEB banko (toliau Bankas) ir SEB grupės įmonių, kurioms atstovauja Bankas ar kurios naudojasi Banko paslaugų internetu sistema,

Detaliau

LT PRIEDAS Teikiant duomenis EURES veiklos vertinimo sistemai naudotinų rodiklių sąrašas Elektroninė šio sąrašo versija ir, jei jis bus iš dalies keič

LT PRIEDAS Teikiant duomenis EURES veiklos vertinimo sistemai naudotinų rodiklių sąrašas Elektroninė šio sąrašo versija ir, jei jis bus iš dalies keič LT PRIEDAS Teikiant duomenis EURES veiklos vertinimo sistemai naudotinų rodiklių sąrašas Elektroninė šio sąrašo versija ir, jei jis bus iš dalies keičiamas, konsoliduotos jo versijos nacionaliniams koordinavimo

Detaliau

Projektas PATVIRTINTA Alytaus Sakalėlio pradinės mokyklos direktoriaus įsakymu Nr. V- ALYTAUS SAKALĖLIO PRADINĖS MOKYKLOS ELEKTRONINIO DIENYNO T

Projektas PATVIRTINTA Alytaus Sakalėlio pradinės mokyklos direktoriaus įsakymu Nr. V- ALYTAUS SAKALĖLIO PRADINĖS MOKYKLOS ELEKTRONINIO DIENYNO T PATVIRTINTA Alytaus Sakalėlio pradinės mokyklos direktoriaus 2019- įsakymu Nr. V- ALYTAUS SAKALĖLIO PRADINĖS MOKYKLOS ELEKTRONINIO DIENYNO TVARKYMO NUOSTATAI I SKYRIUS BENDROSIOS NUOSTATOS 1. Alytaus Sakalėlio

Detaliau

Elektroninio dokumento nuorašas LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTRAS ĮSAKYMAS DĖL ŠVIETIMO IR MOKSLO MINISTRO 2011 M. KOVO 16 D. ĮSAKYMO

Elektroninio dokumento nuorašas LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTRAS ĮSAKYMAS DĖL ŠVIETIMO IR MOKSLO MINISTRO 2011 M. KOVO 16 D. ĮSAKYMO Elektroninio dokumento nuorašas LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTRAS ĮSAKYMAS DĖL ŠVIETIMO IR MOKSLO MINISTRO 2011 M. KOVO 16 D. ĮSAKYMO NR. V-435 DĖL TARPTAUTINIŲ UŽSIENIO KALBŲ EGZAMINŲ

Detaliau

PATVIRTINTA Kauno sporto mokyklos Startas Direktoriaus 2019 m. balandžio 23 d. įsakymu Nr KAUNO SPORTO MOKYKLOS STARTAS PRIVATUMO POLITIKA Kauno

PATVIRTINTA Kauno sporto mokyklos Startas Direktoriaus 2019 m. balandžio 23 d. įsakymu Nr KAUNO SPORTO MOKYKLOS STARTAS PRIVATUMO POLITIKA Kauno PATVIRTINTA Kauno sporto mokyklos Startas Direktoriaus 2019 m. balandžio 23 d. įsakymu Nr. 1-28 KAUNO SPORTO MOKYKLOS STARTAS PRIVATUMO POLITIKA Kauno sporto mokykla Startas (toliau - Mokykla) vertina

Detaliau

LIETUVOS RESPUBLIKOS LYGIŲ GALIMYBIŲ KONTROLIERIUS SPRENDIMAS DĖL GALIMOS DISKRIMINACIJOS AMŽIAUS PAGRINDU UŽDARAJAI AKCINEI BENDROVEI SLAPTO PIRKĖJO

LIETUVOS RESPUBLIKOS LYGIŲ GALIMYBIŲ KONTROLIERIUS SPRENDIMAS DĖL GALIMOS DISKRIMINACIJOS AMŽIAUS PAGRINDU UŽDARAJAI AKCINEI BENDROVEI SLAPTO PIRKĖJO LIETUVOS RESPUBLIKOS LYGIŲ GALIMYBIŲ KONTROLIERIUS SPRENDIMAS DĖL GALIMOS DISKRIMINACIJOS AMŽIAUS PAGRINDU UŽDARAJAI AKCINEI BENDROVEI SLAPTO PIRKĖJO TYRIMAI REIKALAUJANT PATEIKTI INFORMACIJĄ APIE AMŽIŲ

Detaliau

TUKE_isakymas_2015.docx

TUKE_isakymas_2015.docx LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTRAS ĮSAKYMAS DĖL ŠVIETIMO IR MOKSLO MINISTRO 2011 M. KOVO 16 D. ĮSAKYMO NR. V-435 DĖL TARPTAUTINIŲ UŽSIENIO KALBŲ EGZAMINŲ ĮVERTINIMŲ ĮSKAITYMO IR ATITIKMENŲ

Detaliau

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas 001 1 Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp grafo ({q, w, r, g}, {{q, w}, {w, r}, {w, g}}) viršūnių

Detaliau

Brandos egzaminų organizavimas ir vykdymas 2012 m.

Brandos egzaminų organizavimas ir vykdymas 2012 m. BRANDOS EGZAMINŲ ORGANIZAVIMAS IR VYKDYMAS 2012 M. BENDROSIOS NUOSTATOS Brandos egzaminų organizavimo ir vykdymo tvarkos aprašas (toliau Aprašas) reglamentuoja vidurinio ugdymo programos dalykų brandos

Detaliau

RR-GSM_IM_LT_110125

RR-GSM_IM_LT_110125 Retransliatorius RR-GSM Įrengimo instrukcija Draugystės g. 17, LT-51229 Kaunas El. p.: info@trikdis.lt www.trikdis.lt Retransliatorius RR-GSM perduoda priimtus pranešimus į centralizuoto stebėjimo pultą

Detaliau

Projektas

Projektas PATVIRTINTA Kauno technologijos universiteto Lietuvos socialinių tyrimų centro Vytauto Didžiojo universiteto Sociologijos mokslo krypties doktorantūros komiteto 2017 m. birželio 6 d. posėdžio nutarimu

Detaliau

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluation of Random Search Optimization Algorithms Magistro

Detaliau

Microsoft Word - tp_anketa_f.doc

Microsoft Word - tp_anketa_f.doc PRIEDAS. Tyrimo anketa. Moksleivių tėvų požiūris į dabartines švietimo problemas Sėkmingam Lietuvos švietimo reformos vyksmui labai svarbi ne tik politikų ir švietimo specialistų, bet ir Jūsų moksleivių

Detaliau

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm BaziniaiSprendiniai&KrastutiniaiTaskai.wxm / Baziniai sprendiniai ir kraštutiniai taškai (C) A.Domarkas, VU, 25 žr.: [] 2-252; [2] 9-98; [3] 33-; [] 89-98; [5] 6.3 Tegul tiesinių lygčių sistemos nežinomųjų

Detaliau

BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS

BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS I. ĮŽANGA Lietuvos Respublikos ryšių reguliavimo tarnybos

Detaliau

Pajamų gautų natūra apmokestinimas: automobilio naudojimas ir asmeniniais tikslais

Pajamų gautų natūra apmokestinimas: automobilio naudojimas ir asmeniniais tikslais Klausimai- atsakymai: 1. Klausimas: Nuo kada pajamomis, gautomis natūra yra pripažįstama gyventojo gauta nauda, kai kitam asmeniui priklausantis automobilis naudojamas ir asmeniniais tikslais? Atsakymas:

Detaliau

Microsoft PowerPoint - Aktyvaus mokymosi metodai teisinio ugdymo paskaitose.pptx

Microsoft PowerPoint - Aktyvaus mokymosi metodai teisinio ugdymo paskaitose.pptx AKTYVAUS MOKYMOSI METODAI TEISINIO UGDYMO PASKAITOSE DOC. DR. ROMAS PRAKAPAS EDUKOLOGIJOS KATEDRA KOKYBĖ KAIP ŠIANDIENOS AKTUALIJA Mokslo ir studijų sistema orientuojama į kūrybingos, išsilavinusios, orios,

Detaliau

PATVIRTINTA Lietuvos banko valdybos 2011 m. rugsėjo 1 d. nutarimu Nr (Lietuvos banko valdybos 2015 m. gegužės 28 d. nutarimo Nr redakci

PATVIRTINTA Lietuvos banko valdybos 2011 m. rugsėjo 1 d. nutarimu Nr (Lietuvos banko valdybos 2015 m. gegužės 28 d. nutarimo Nr redakci PATVIRTINTA Lietuvos banko valdybos 2011 m. rugsėjo 1 d. nutarimu Nr. 03-144 (Lietuvos banko valdybos 2015 m. gegužės 28 d. nutarimo Nr. 03-90 redakcija) ATSAKINGOJO SKOLINIMO NUOSTATAI I SKYRIUS BENDROSIOS

Detaliau

VIEŠO NAUDOJIMO Aplinkos oro teršalų koncentracijos tyrimų, atliktų 2017 m. rugpjūčio d. Šiltnamių g. 23 Vilniaus mieste, naudojant mobiliąją la

VIEŠO NAUDOJIMO Aplinkos oro teršalų koncentracijos tyrimų, atliktų 2017 m. rugpjūčio d. Šiltnamių g. 23 Vilniaus mieste, naudojant mobiliąją la Aplinkos oro teršalų koncentracijos tyrimų, atliktų 2017 m. rugpjūčio 11 25 d. Šiltnamių g. 23 Vilniaus mieste, naudojant mobiliąją laboratoriją, rezultatų apžvalga Vilnius, 2017 m. Turinys Įžanga... 3

Detaliau

Patvirtinta bendra forma , potvarkis Nr. 5 ALEKSANDRO STULGINSKIO UNIVERSITETAS Pirmosios (bakalauro) pakopos Agronomijos studijų programos

Patvirtinta bendra forma , potvarkis Nr. 5 ALEKSANDRO STULGINSKIO UNIVERSITETAS Pirmosios (bakalauro) pakopos Agronomijos studijų programos Patvirtinta bendra forma 2015-05-26, potvarkis Nr. 5 ALEKSANDRO STULGINSKIO UNIVERSITETAS Pirmosios (bakalauro) pakopos Agronomijos studijų programos studijų dalyko ĮVADAS Į STUDIJAS APRAŠAS Studijų programą

Detaliau

KROSNININKO SERTIFIKAVIMO schema

KROSNININKO SERTIFIKAVIMO schema Development of VET Training on Energy Efficient Stoves and Fireplaces ENEFFIS No. 2016-1-LT01-KA202-023161 KROSNININKO SERTIFIKAVIMO schema Parengė: VšĮ Vilniaus statybininkų rengimo centras Asociacija

Detaliau

II-a klasė

II-a klasė II klasės testų vertinimo ir atsakymų lentelė I testas 1. Už kiekvieną užrašytą žodį skiriama po pusę pupos ir už kiekvieną pažymėtą e ė raidę po pusę pupos (1,5+1,5, 3 pupos). 2. Už kiekvieną taisyklingai

Detaliau