Slide 1
|
|
- Lėja Kalvelis
- prieš 5 metus
- Peržiūrų:
Transkriptas
1 Duomenų struktūros ir algoritmai 2 paskaita
2 Algoritmo sąvoka Algoritmas tai tam tikra veiksmų seka, kurią reikia atlikti norint gauti rezultatą. Įvesties duomenys ALGORITMAS Išvesties duomenys
3 Algoritmo užrašymo būdai Blokinė schema (Flowchart) Pseudokodas (Pseudocode) Paprasta kalba Algoritmo žingsnių vizualizacija
4 Pseudokodas ir blokinė schema (1) Average(x, y, z) sum x + y + z avg sum / 3 return(print(avg))
5 Pseudokodas ir blokinė schema (2) OvertimePay(hours, rate) if hours 40 then pay hours * rate else pay 40 * rate + (hours 40) * rate *1,5 return(print(pay))
6 Klasikiniai algoritmai Seniausias žinomas algoritmas Euklido didžiausio bendro daliklio algoritmas. GCD(a, b) while b > 0 c b b a % b a c return(a) (GCD = Greatest Common Divisor) Pastaba: operatorius % žymi dalybos liekaną: a % b = a mod b (pavyzdžiui, 20 % 7 = 6).
7 Euklido didžiausio bendro daliklio algoritmo taikymai GCD(a, b, c) = GCD(GCD(a, b), c), GCD(a, b, c, d) = GCD(GCD(GCD(a, b), c), d) ir t. t. 1 užduotis: realizuokite algoritmą: GCD(a 1, a 2,..., a n ). Pažymėkime LCM(a, b) mažiausią bendrą kartotinį skaičių a ir b, tada teisinga lygybė: 2 užduotis: realizuokite algoritmą: LCM(a, b) = a * b * GCD(a, b). LCM(a 1, a 2,..., a n ). (LCM = Least Common Multiple)
8 Pirminių skaičių paieškos algoritmai Eratosteno rėčio algoritmo žingsnių vizualizacija
9 Ulamo spiralė According to Gardner, Ulam discovered the spiral in 1963 while doodling during the presentation of "a long and very boring paper" at a scientific meeting.
10 Skaičiavimo sistemos keitimo algoritmas
11 Rekursija Rekursija tai savybė nusakyti objektą remiantis juo pačiu. Programavime rekursija vadinamas paprogramės (procedūros arba funkcijos) kreipimasis į save pačią. Rekursijos taikymas skaičiuojant n!: factorial(n) if n < 1 then return(1) else return(n * factorial(n-1)) Rekursijos taikymas sudarant Pitagoro medį:
12 Indukcija Indukcija 1 loginis samprotavimas, kuriame nuo atskirų faktų, žinių einama prie bendresnių (buvo per pirmą paskaitą). Indukcija 2 sistemingai pasikartojanti veiksmų seka, kurioje rekurentiniai sąryšiai nekinta. Pavyzdys. Fibonači sekos: 1, 1, 2, 3, 5, 8, 13, 21, 34,... n-tasis narys (išskyrus pirmus 2 narius) rekurenčiai apskaičiuojamas pagal formulę: F[n] = F[n-1] + F[n-2].
13 Algoritmų taikymo pavyzdžiai Nuoseklioji paieška Dvejetainė paieška Skaldyk ir valdyk principas
14 Nuoseklioji paieška Programa patikrina, ar skaičius v yra duotoje aibėje a=[a[q],a[q+1],..., a[r]]. Jei taip, grąžinamas ieškomo elemento indeksas masyve, jei ne, grąžinama reikšmė -1. IndexSearch(a, v, q, r) for i q to r do if v = a[i] then return(i) return(-1)
15 Dvejetainė paieška Programa patikrina, ar skaičius v yra duotoje aibėje a=[a[q],a[q+1],..., a[r]], kurios elementai surūšiuoti. Jei taip, grąžinamas ieškomo elemento indeksas masyve, jei ne, grąžinama reikšmė -1. BinarySearch(a, v, q, r) if r q then m [(q + r) / 2] if v = a[m] then return(m) else if v < a[m] then return(binarysearch(a, v, q, m-1) else return(binarysearch(a, v, m+1, r) else return(-1)
16 Skaldyk ir valdyk principas Skaldyk ir valdyk principas skirtas sunkesnę užduotį skaidyti į lengvesnes ir greičiau išsprendžiamas užduotis. Galutinis atsakymas gaunamas apibendrinus lengvesnių užduočių atsakymus. Pavyzdžiai: Great Internet Mersenne Prime Search projektas (Merseno pirminių skaičių M n = 2 n 1 paieška). Kompiuterinių žaidimų kūrimas. Lygiagretieji skaičiavimai (pvz: C/C++ OpenMP) Politinių rinkimų balsų skaičiavimas.
17 Algoritmo sudėtingumas Algoritmo sudėtingumas algoritmo darbo laiko priklausomybė nuo pradinių duomenų (input) dydžio. Algoritmo sudėtingumas priklauso nuo: Sprendžiamos problemos uždavinių sudėtingumo. Efektyvaus algoritmo parinkimo. Programavimo kokybės. Algoritmo sudėtingumas gali būti matuojamas ne tik laiku, bet ir Naudojamos atminties dydžiu (Space Complexity). Techninės įrangos parametrais. Gaunamos informacijos kiekiu (Information Complexity). Sunaudojamos elektros energijos kiekiu (pvz kriptovaliutos).
18 Trys pagrindinės algoritmo sudėtingumo klasės Tiesinio sudėtingumo algoritmai O(N) Polinominio sudėtingumo algoritmai O(N C ) Eksponentinio sudėtingumo algoritmai O(q N )
19 Algoritmo sudėtingumo žymėjimai Dažniausiai sutinkami algoritmo sudėtingumo įverčiai yra O(n), o(n), θ(n), kurie nežymiai skiriasi matematiniais apibrėžimais, tačiau visi jie apibrėžia funkcijos g(n) = O(f(N)) asimptotiką argumentui N artėjant į begalybę. Funkcijos asimptotika tai funkcijos f(x) reikšmės kitimo tendencija argumentui x artėjant į begalybę. (Galima panaudoti GeoGebra programą funkcijos asimptotikai vizualizuoti.)
20 O-žymuo
21 O ir θ žymenys
22 Algoritmų sudėtingumo klasės O(1) O(logN) O(N) O(NlogN) O(N 2 ) O(N 3 ) O(2 N ), O(N!) Programos vykdymo laikas yra nekintamas (proprocingas konstantai) Programa vykdoma truputį lėčiau, kai N didėja, šis laikas paprastai būna programose, kurios sprendžia didelį uždavinį, transformuodamos jį į eilę mažesnių uždavinių, išskaidydamos į fiksuotas dalis kiekviename etape, galima teigti, kad vykdymo laikas yra mažesnis nei didelė konstantos reikšmė. Programos vykdymo laikas yra tiesinis, jis didėja proporcingai įvedimo duomenų kiekiui. Programos vykdymo laikas ilgėja proporcingai N log N, dažniausiai tai atsitinka, kai programa sprendžia uždavinį, išskaidydama jį į mažesnius uždavinius, kuriuos sprendžia atskirai, ir galiausiai sprendimus sujungia. Programos vykdymo laikas yra kvadratinis, programa praktiškai tinkama tik palyginti mažų uždavinių sprendimui, tai būdinga programoms, kurios apdoroja visas duomenų poras (galbūt dvigubo ciklo metu). Programos (galbūt turinčios trigubą ciklą) vykdymo laikas yra kubinis ir praktiškai skirtas mažiems uždaviniams spręsti. Praktiškai yra tik kelios programos su rodikliniu vykdymo laiku (eksponentinio, faktorialinio sudėtingumo), kurios tinkamos praktiniam naudojimui, pvz. tokios kaip brutalios jėgos (brute-force) uždavinių sprendimai.
23 Duomenų struktūros Abstraktus duomenų tipas (ADS) tai duomenų arba jų aibių, operacijų su duomenimis ir loginių ryšių tarp operacijų ir duomenų apibrėžimas (specifikacija). Duomenų struktūros: Statinės duomenų struktūros (pavyzdžiui, masyvai). Dinaminės duomenų struktūros (realizacija panaudojant rodyklės tipo kintamuosius: tiesinis sąrašas, stekas, eilė, dekas ir kt). Rodyklė (pointer) tai atminties ląstelė, kurioje saugomas kitos ląstelės adresas. Naudojant rodykles, netiesiogiai pasiekiami duomenys, esantys ląstelėje, kurios adresą žino rodyklė.
24 Rodyklės C++ #include <iostream> using namespace std; int main () { int var = 20; // actual variable declaration. int *ip; // pointer variable ip = &var; // store address of var in pointer variable cout << "Value of var variable: "; cout << var << endl; // print the address stored in ip pointer variable cout << "Address stored in ip variable: "; cout << ip << endl; // access the value at the address available in pointer cout << "Value of *ip variable: "; cout << *ip << endl; } return 0; Plačiau:
25 Tiesinis sąrašas (realizacija naudojant rodykles)
26 Sąrašo pavyzdys Sąrašo pradžios rodyklė turi pirmojo sąrašo elemento adresą, kuriuo pradedant galima nuosekliai pereiti per visus sąrašo elementus. Paskutinio sąrašo elemento tuščia rodyklė rodo, kad pasiektas paskutinis sąrašo elementas. Daugiau informacijos:
27 Tiesinis sąrašas Tiesinis sąrašas tai duomenų aibė, kuriai apibrėžtos tokios operacijos: Sukurti tuščią sąrašą. Patikrinti, ar sąrašas tuščias. Patikrinti, ar sąrašas pilnas. Suskaičiuoti sąrašo elementus. Gauti n-tojo sąrašo elemento duomenis. Įterpti naujus duomenis (naują elementą) prieš n-tąjį elementą. Panaikinti n-tąjį sąrašo elementą. Rasti sąrašo elemento numerį su nurodytais duomenimis. Išvesti sąrašo elementus.
28 Dėklas (stack) Duomenų struktūra stekas tai duomenų aibė, kuriai apibrėžtos tokios operacijos: inicializuoti dėklą (išskirti vietą stekui kompiuterio atmintyje); įterpti elementą x į dėklą (operacija stack_push(x)); pašalinti elementą iš dėklo (operacija stack_pop()); skaityti dėklą; panaikinti dėklą (stack_clear()) panaikinti vietą dėklui kompiuterio atmintyje.
29 LIFO principas Last-In-First-Out Operacijos stack_pop() metu iš dėklo bus pašalintas elementas, kuris buvo įterptas paskutinis.
30 Dėklas naudojamas kompiuterio aparatūroje, programose, operacinių sistemų architektūroje, kompiliatoriuose, loginių ir simbolinių skaičiavimų algoritmuose.
31 Dėklo taikymo pavyzdys Užrašykime dėklo operacijų seką skaičiuojant aritmetinio reiškinio 9*(((5+8)+(8*7))+3) reikšmę: stack_push(9); stack_push(5); stack_push(8); stack_push(stack_pop() + stack_pop()); stack_push(8); stack_push(7); stack_push(stack_pop() * stack_pop()); stack_push(stack_pop() + stack_pop()); stack_push(3); stack_push(stack_pop() + stack_pop()); stack_push(stack_pop() * stack_pop()).
32 Realizacija Programuojant dėklo operacijas C++ kalba galima taikyti vieną iš 2 bazinių tipų: rodyklės tipą (rekomenduojama), masyvo tipą.
33 Eilutė (queue) Duomenų struktūra eilutė tai duomenų aibė, kuriai apibrėžtos tokios operacijos: inicializuoti eilutę (išskirti vietą eilutei kompiuterio atmintyje); įterpti tam tikrą elementą x į eilutę; pašalinti elementą x iš eilutės; skaityti eilutę; panaikinti eilutę (panaikinti vietą eilutei kompiuterio atmintyje).
34 Eilutė Duomenims eilėje taikomi loginiai apribojimai. FIFO (First-In-First-Out) principas. Eilutės struktūra taikoma: algoritmams realizuoti; programų loginėms schemoms; operacinių ir taikomųjų sistemų architektūroje; kompiliatoriams; loginių ir simbolinių skaičiavimų algoritmams; matematinio modeliavimo uždaviniams ir t. t. Programuojant eilutės operacijas taikomas vienas iš 2 bazinių tipų: rodyklės tipas, masyvo tipas.
35 Abipusis dėklas (deque, deck) Duomenų struktūra abipusis dėklas tai duomenų aibė, kuriai apibrėžtos tokios operacijos: inicializuoti abipusį dėklą (išskirti vietą dekui kompiuterio atmintyje); įterpti elementą x į abipusio dėklo pradžią; įterpti elementą x į abipusio dėklo pabaigą; pašalinti elementą iš abipusio dėklo pradžios; pašalinti elementą iš abipusio dėklo pabaigos; skaityti abipusio dėklo pradžią; skaityti d abipusio dėklo pabaigą; panaikinti abipusį dėklą (panaikinti vietą abipusio dėklo kompiuterio atmintyje).
36 Abipusis dėklas Duomenims saugoti abipusiame dėkle taikomi loginiai apribojimai. Sudėtingesnė realizacija. Programuojant abipusio dėklo operacijas taikomas vienas iš 2 bazinių tipų: rodyklės tipas, masyvo tipas.
37 Ačiū už dėmesį. Klausimai?
Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF
Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2016-02-15 Tiesinės duomenų struktūros Panagrinėsime keletą žinomų ir įvairiuose taikymuose naudojamų
DetaliauMicrosoft Word - 15_paskaita.doc
15 PASKAITA Turinys: Išimtys Išimtys (exceptions) programos vykdymo metu kylančios klaidingos situacijos, nutraukiančios programos darbą (pavyzdžiui, dalyba iš nulio, klaida atveriant duomenų failą, indekso
DetaliauPowerPoint Presentation
Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-28 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti.
DetaliauPowerPoint Presentation
Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to
DetaliauAlgoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF
Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna
DetaliauSlide 1
Duomenų struktūros ir algoritmai 3 paskaita 2019-02-20 2 paskaitos papildymas Realaus skaičiaus konvertavimas į kitą skaičiavimo sistemą Pirminių dvynių paieškos algoritmas Tiesinio sąrašo realizacija,
Detaliau4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun
skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej
DetaliauAlgoritmø analizës specialieji skyriai
VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo
DetaliauDB sukūrimas ir užpildymas duomenimis
DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio
DetaliauMasyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ
Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #include main() int mas[100]; int k; for (int
DetaliauPagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i
Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas int Suma (int X[], int n) int s = 0; s = s + X[i]; return s; double Suma (double X[], int
DetaliauDažniausios IT VBE klaidos
Dažniausios IT VBE klaidos Renata Burbaitė renata.burbaite@gmail.com Kauno technologijos universitetas, Panevėžio Juozo Balčikonio gimnazija 1 Egzamino matrica (iš informacinių technologijų brandos egzamino
DetaliauLIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d
LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant
Detaliau10 Pratybos Oleg Lukašonok 1
10 Pratybos Oleg Lukašonok 1 2 Tikimybių pratybos 1 Lema Lema 1. Tegul {Ω, A, P} yra tikimybinė erdvė. Jeigu A n A, n N, tai i) P (lim sup A n ) = P ( k=1 n=k A n ) = lim P ( n k n=ka n ), nes n=ka n monotoniškai
Detaliau* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak
1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra
DetaliauSlide 1
Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje
DetaliauIII. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa
III SVEIKI NENEIGIAMI SKAIČIAI 31 Indukcijos aksioma Natūraliu aibės sa voka viena svarbiausiu matematikoje Nors natūralaus skaičiaus sa voka labai sena, bet šio skaičiaus buveinės sa voka buvo suformuluota
Detaliauktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas
ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas Turinys 1 Skaičiavimo sistemos 3 11 Sveikųjų dešimtainių skaičių išreiškimas dvejetaine, aštuntaine
DetaliauAtranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų
Atranka į 019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų skaičių seką a 1, a, a 3,..., o tada apibrėžė naują
DetaliauProjektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr
Studijų programos aprašas Studijų programos pavadinimas Informatika Aukštojo mokslo institucija (-os), padalinys (-iai) Vilniaus universitetas, Matematikos ir informatikos fakultetas, Informatikos katedra
DetaliauPrinting triistr.wxmx
triistr.wxmx / Triįstrižainių lygčių sistemų sprendimas A.Domarkas, VU, Teoriją žr. []; [], 7-7; []. Pradžioje naudosime Gauso algoritmą, kuriame po įstrižaine daromi nuliai. Po to grįždami į viršų virš
DetaliauMicrosoft Word - DSEA-3s.doc
3. Rūšiavimo algoritmai Rūšiavimas yra viena iš bazinių kompiuterių darbo operacijų kompiuteris vidutiniškai apie 25 procentus viso skaičiavimo laiko sunaudoja rūšiavimui. Rūšiavimo kaip algoritmo tikslas
Detaliauskaitiniai metodai 1
Lygiagretusis programavimas doc. dr. Vadimas Starikovičius 6-oji paskaita Paskirstytosios atminties lygiagretusis programavimas. MPI programavimo biblioteka. Pagrindinės MPI funkcijos. Paskirstytos atminties
DetaliauVERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA
PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 2007 m. rugsėjo 6 d. įsakymu Nr. ISAK-1790 VERSLO IR VADYBOS TECHNOLOGIJŲ BENDROJI PROGRAMA MOKINIAMS, BESIMOKANTIEMS PAGAL VIDURINIO UGDYMO
Detaliau(Microsoft Word - Pasiruo\360imas EE 10 KD-1)
-as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.
Detaliau9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l
9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios
DetaliauLietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3)
Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių 11-12 klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) 4, 4 (5 6) 7, 7 (8 9) 10,..., 2014 (2015 2016) 2017.
DetaliauPS_riba_tolydumas.dvi
Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos
DetaliauDBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas
DBVS realizavimas Pagrindiniai DBVS komponentai Duomenų saugojimas diske Paruošė J.Skučas Seminaro tikslai Trumpai apžvelgti pagrindinius DBVS komponentus Detaliai nagrinėjami optimalaus duomenų dėstymo
Detaliauskaitiniai metodai 1
Lygiagretusis programavimas doc. dr. Vadimas Starikovičius 4-oji paskaita OpenMP programavimo standartas. Programavimo modelis. OpenMP konstrukcijos. PThreads: Hello, world! pavyzdys #include
DetaliauPrinting AtvirkstineMatrica.wxmx
AtvirkstineMatrica.wxmx / Atvirkštinė matrica A.Domarkas, VU, Teoriją žr. [], 8-; []. Figure : Toliau pateiksime atvirkštinės matricos apskaičiavimo būdus su CAS Maxima. su komanda invert pavyzdys. [],
DetaliauJava esminės klasės, 1 dalis Išimtys, Įvestis/išvestis
Java esminės klasės, 1 dalis Išimtys, Įvestis/išvestis Klaidų apdorojimas C kalboje If (kazkokia_salyga) { klaidos_apdorojimas(); return... } Tokio kodo apimtis galėdavo sekti iki 70-80proc. Klaidų/išimčių
DetaliauDĖL APLINKOS IR SVEIKATOS MOKSLO KOMITETO ĮSTEIGIMO
LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS ĮSAKYMAS DĖL LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRO 011 M. KOVO D. ĮSAKYMO NR. V-199 DĖL LIETUVOS HIGIENOS NORMOS HN 80:011 ELEKTROMAGNETINIS
DetaliauLayout 1
Kvalifikacijos kėlimo kursų programos Pneumatika Pneumatikos pagrindai mašinų operatoriams P100 Suteikite savo mašinų operatoriams įgūdžių optimalaus darbinio slėgio nustatymui, oro pratekėjimų (nuostolių)
DetaliauTIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil
TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų
DetaliauTechninis aprašymas Tolygaus valdymo pavara AME 435 Aprašymas Vožtuvo srauto reguliavimo funkciją. Srautą galima įvairiai reguliuoti nuo tiesinio iki
Techninis aprašymas Tolygaus valdymo pavara AME 435 Aprašymas Vožtuvo srauto reguliavimo funkciją. Srautą galima įvairiai reguliuoti nuo tiesinio iki logaritminio arba atvirkščiai. Nuo svyravimų sauganti
DetaliauUGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ
UGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ VADOVĖLIŲ TURINIO VERTINIMO TVARKOS APRAŠO PATVIRTINIMO
DetaliauLogines funkcijos termu generavimo algoritmas pagristas funkciniu modeliu
KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS PROGRAMŲ INŽINERIJOS KATEDRA Tomas Žemaitis LOGINĖS FUNKCIJOS TERMŲ GENERAVIMO ALGORITMAS PAGRĮSTAS PROGRAMINIO PROTOTIPO MODELIU Magistro darbas
DetaliauTeorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t
Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis
Detaliaulec10.dvi
paskaita. Euklido erdv_es. pibr_ezimas. Vektorin_e erdv_e E virs realiuju skaiciu kuno vadinama Euklido erdve, jeigu joje apibr_ezta skaliarin_e sandauga, t.y. tokia funkcija, kuri vektoriu porai u; v
DetaliauMicrosoft Word - 8 Laboratorinis darbas.doc
Laboratorinis darbas Nr. 8 MOP (metalo sido puslaidininkio) struktūrų tyrimas aukštadažniu -V charakteristikų metodu Darbo tikslas: 1. Nustatyti puslaidininkio laidumo tipą. 2. Nustatyti legiravimo priemaišų
DetaliauP. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M
Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai MATLAB komandų seka, vadinama programa, įrašyta į failą. Vykdant skripto failą įvykdomos jame esančios komandos. Bus kalbama, kaip sukurti
DetaliauMicrosoft Word - Liuminescencija_teorija
2. BOLOGNŲ OBJEKTŲ LUMNESCENCJA. 2.1 Įvadas. Liuminescencijos reiškinys Daugelis fotofizikinių ir fotocheminių vyksmų yra šviesos sąveikos su bioobjektu pasekmės. Vienas iš pagrindinių šviesos emisijos
DetaliauRR-GSM_IM_LT_110125
Retransliatorius RR-GSM Įrengimo instrukcija Draugystės g. 17, LT-51229 Kaunas El. p.: info@trikdis.lt www.trikdis.lt Retransliatorius RR-GSM perduoda priimtus pranešimus į centralizuoto stebėjimo pultą
DetaliauMatricosDetermTiesLS.dvi
MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas
DetaliauTAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee
001 x 1 2 + x + 12 lim x 4 2x 1 2; 0; 2 1 2; 5 1; 6 2; ; 1 2 4 riba neegzistuoja; 14x 2 2 + 29 lim x 1x 2 + 4x + 9 1 1; 2 29 9 ; ; 4 0; 5 riba neegzistuoja; 6 1 14; 14 1; 14 x + 1 lim x 4 x 4 1 riba neegzistuoja;
DetaliauBALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS
BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS I. ĮŽANGA Lietuvos Respublikos ryšių reguliavimo tarnybos
DetaliauVILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat
VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluation of Random Search Optimization Algorithms Magistro
DetaliauTechninė dokumentacija Qlik Sense architektūros apžvalga 2015 m. gruodis qlik.com
Techninė dokumentacija Qlik Sense architektūros apžvalga 2015 m. gruodis qlik.com Platforma Qlik Sense tai analitikos platforma, naudojanti asociatyvinį analitikos variklį operatyvinėje atmintyje. Remiantis
Detaliau274 PRIEDAI K priedas. Elektroninio vartotojo gyvavimo ciklo tyrimo duomenų charakteristikos K.1 lentelė. Klausimyno dalies, skirtos elektroninio vart
274 PRIEDAI K priedas. Elektroninio vartotojo gyvavimo ciklo tyrimo duomenų charakteristikos K.1 lentelė. Klausimyno dalies, skirtos elektroninio vartotojo gyvavimo ciklo analizei, patikimumo vertinimas
DetaliauMATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at
MTEMTIKS BRNDS EGZMIN PRGRMS MINIMLIUS REIKLVIMUS ILIUSTRUJNTYS PVYZDŽII Egzamino programos minimalūs reikalavimai.. Paprastais atvejais patikrinti, ar duotoji seka ra aritmetinė/geometrinė progresija.
DetaliauLT Europos Sąjungos oficialusis leidinys L 79/11 DIREKTYVOS KOMISIJOS DIREKTYVA 2007/16/EB 2007 m. kovo 19 d. įgyvendinanti Tarybos direktyv
2007 3 20 Europos Sąjungos oficialusis leidinys L 79/11 DIREKTYVOS KOMISIJOS DIREKTYVA 2007/16/EB 2007 m. kovo 19 d. įgyvendinanti Tarybos direktyvą 85/611/EEB dėl įstatymų ir kitų teisės aktų, susijusių
DetaliauMuzikos duomenų bazės NAXOS Music Library naudojimo vadovas Turinys Kas yra NAXOS Music Library... 2 Kaip pradėti naudotis... 3 Kaip atlikti paiešką..
Muzikos duomenų bazės NAXOS Music Library naudojimo vadovas Turinys Kas yra NAXOS Music Library... 2 Kaip pradėti naudotis... 3 Kaip atlikti paiešką... 3 Paprastoji paieška... 3 Išplėstinė paieška... 3
DetaliauAlgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul
lgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7. pibr eµzimas. Matrica yra m eiluµciu¾ir n stulpeliu¾turinti staµciakamp e lentel e su joje i¾rašytais
DetaliauMicrosoft Word - Palmolive_Drogas_full_rules_April_2019.doc
Žaidimo Pirkite bet kurį PALMOLIVE produktą parduotuvėse Drogas ir laimėkite SPA Vilnius dovanų kuponą! rengimo taisyklės: 1. ŽAIDIMO UŽSAKOVAS, ORGAIZATORIUS IR PRIZŲ KOORDINATORIUS 1.1. Žaidimo užsakovas
DetaliauPrinting BaziniaiSprendiniai&KrastutiniaiTaskai.wxm
BaziniaiSprendiniai&KrastutiniaiTaskai.wxm / Baziniai sprendiniai ir kraštutiniai taškai (C) A.Domarkas, VU, 25 žr.: [] 2-252; [2] 9-98; [3] 33-; [] 89-98; [5] 6.3 Tegul tiesinių lygčių sistemos nežinomųjų
DetaliauQR algoritmas paskaita
Turinys QR algoritmas 4 paskaita Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 4 5 TA skaitiniai metodai ( MIF VU) Tiesinių lygčių sistemų sprendimas / 40 TA skaitiniai
DetaliauVADOVĖLIO VERTINIMO KRITERIJŲ APRAŠAI 1. MEDŽIAGOS TINKAMUMAS VERTYBINĖMS NUOSTATOMS UGDYTI(S) Vertinimo kriterijai 1.1. Tekstinė ir vaizdinė medžiaga
VADOVĖLIO VERTINIMO KRITERIJŲ APRAŠAI 1. MEDŽIAGOS TINKAMUMAS VERTYBINĖMS NUOSTATOMS UGDYTI(S) 1.1. Tekstinė ir vaizdinė medžiaga atitinka pagrindines demokratijos vertybes ir principus (asmens ir tautos
DetaliauVIDURINIO UGDYMAS Vidurinis ugdymas neprivalomas, trunka dvejus metus (11 ir 12 vidurinės mokyklos ar gimnazijų III IV klasės). Mokiniai mokosi pagal
VIDURINIO UGDYMAS Vidurinis ugdymas neprivalomas, trunka dvejus metus (11 ir 12 vidurinės mokyklos ar gimnazijų III IV klasės). Mokiniai mokosi pagal individualius ugdymosi planus. (Pagal vidurinio ugdymo
DetaliauMicrosoft Word - T-Krivousas_magistrinis.doc
KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS PROGRAMŲ INŽINERIJOS KATEDRA Tomas Krivoūsas Verifikavimo algoritmų panaudojimas analizuojant formalių PLA specifikacijų teisingumą Magistro darbas
DetaliauPATVIRTINTA Valstybinės kainų ir energetikos kontrolės komisijos pirmininko 2017 m. d. įsakymu Nr. O1- VALSTYBINĖS KAINŲ IR ENERGETIKOS KONTROLĖS KOMI
PATVIRTINTA Valstybinės kainų ir energetikos kontrolės komisijos pirmininko 2017 m. d. įsakymu Nr. O1- VALSTYBINĖS KAINŲ IR ENERGETIKOS KONTROLĖS KOMISIJOS ELEKTROS ENERGIJOS KAINŲ PALYGINIMO INFORMACINĖS
DetaliauKauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė i
Kauno menų darželis Etiudas Mgr. Virginija Bielskienė, direktorės pavaduotoja ugdymui, II vad. kategorija, auklėtoja metodininkė Žaidimas pagrindinė ikimokyklinio ir priešmokyklinio amžiaus ir jaunesnio
DetaliauPowerPoint Presentation
PARAIŠKOS DĖL PROJEKTO FINANSAVIMO PILDYMAS IR TEIKIMAS Indrė Dagilienė 2018 m. spalio 25-26 d. Vilnius-Kaunas Paraiškos pildymas Paraiška pildoma vadovaujantis projektų finansavimo sąlygų Aprašo Nr. 4
DetaliauGRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta
GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem. 2018 m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta grafų algoritmams, tačiau apibrėžus gretimumo matricą
DetaliauSlide 1
Dalelių filtro metodo ir vizualios odometrijos taikymas BPO lokalizacijai 2014 2018 m. studijos Doktorantas: Rokas Jurevičius Vadovas: Virginijus Marcinkevičius Disertacijos tikslas ir objektas Disertacijos
DetaliauLIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS
ALEKSANDRO STULGINSKIO UNIVERSITETAS Agronomijos fakultetas Žemdirbystės katedra STUDIJŲ DALYKO APRAŠAS Dalyko kodas: AFŽEB07E Pavadinimas lietuvių kalba: Mokslinių tyrimų metodika Pavadinimas anglų kalba:
DetaliauElektroninių pažymėjimų tvarkymo sistema
Data: 2019-09-16 Valstybinio socialinio draudimo fondo valdyba Turinys 1. Įžanga... 3 1.1. Dokumento tikslas... 3 1.2. Terminai ir santrumpos... 3 2. Perskaitykite pirmiausia... 4 2.1. Ką rasite šiame
DetaliauUAB VALENTIS PRIVATUMO POLITIKA Uždaroji akcinė bendrovė Valentis (toliau Valentis arba mes), įgyvendindama 2016 m. balandžio 27 d. Europos Parlamento
UAB VALENTIS PRIVATUMO POLITIKA Uždaroji akcinė bendrovė Valentis (toliau Valentis arba mes), įgyvendindama 2016 m. balandžio 27 d. Europos Parlamento ir Tarybos reglamento (ES) 2016/679 dėl fizinių asmenų
DetaliauBanko_paslaugu_internetu_teikimo_salygos_
Banko paslaugų internetu teikimo sąlygos 1. Banko paslaugos internetu tai AB SEB banko (toliau Bankas) ir SEB grupės įmonių, kurioms atstovauja Bankas ar kurios naudojasi Banko paslaugų internetu sistema,
DetaliauLietuvos mobiliojo ryšio operatorių 30Mbit/s zonų skaičiavimo metodika
MOBILIOJO RYŠIO OPERATORIŲ 30 MB/S APRĖPTIES SKAIČIAVIMAI RRT atliktos analizės rezultatų viešas aptarimas, Susisiekimo ministerija 2015 10 19 Lietuvos respublikos ryšių reguliavimo tarnyba Direktoriaus
DetaliauRET2000 Elektronisis Skaitmeninis Termostatas su LCD
MAKING MODERN LIVING POSSIBLE RET2000 B/M/MS Elektroninis skaitmeninis termostatas su LCD Danfoss Heating Montavimo vadovas Norėdami gauti išsamią spausdintą šių instrukcijų versiją, skambinkite Rinkodaros
DetaliauS K Y R I U S – 0
S K Y R I U S 0 STATISTIKA, TEISĖ, ŽODYNAI, ENCIKLOPEDIJOS 1. Enciklopedija ENCARTA 2002 standartai 459 2. Žmogaus teisių vykdymo integracinės pamokos 497 S K Y R I U S 2 INFORMATIKA, KOMPIUTERIJA 1. CD
DetaliauIndividualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotoja
Individualus projektas Programa TE-PM, TE-PS, TE-SL, TEstream 4, TEstream 6, TEstream 8, TEstreamOBD 4, TEstreamOBD 6, TEstreamOBD 8 sistemų naudotojams Alternatyvus valdymo pultas telefone ViPGaS programos
DetaliauUAB NAUJASIS TURGUS PREKYBOS VIETŲ KAINOS NUSTATYMO METODIKA UAB Naujasis turgus užsakymu parengė UAB Eurointegracijos projektai Vilnius,
UAB NAUJASIS TURGUS PREKYBOS VIETŲ KAINOS NUSTATYMO METODIKA UAB Naujasis turgus užsakymu parengė UAB Eurointegracijos projektai Vilnius, 2017 1 UAB NAUJASIS TURGUS PREKYBOS VIETŲ KAINOS NUSTATYMO METODIKA
DetaliauMokinių kūrybinių darbų vertinimo kriterijai, vertinimo aptarimas
Mokinių kūrybinių darbų atlikimas ir vertinimas Vilniaus Mykolo Biržiškos gimnazijos informacinių technologijų mokytoja Rima Šiaulienė IT PUPP kūrybinio darbo išbandymas 2012-2013 m.m. IT PUPP kūrybinių
DetaliauTAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį.
00 Nustatykite funkcijos f() = +2 6 cos ( 3) apibrėžimo sritį (, 0) (0, 2) (2, + ) 2 (, 2) ( 2, + ) 3 (, 2] 4 [ 2, + ) 5 [2, ) 6 (, 2] 7 (, + ) 8 [ 2, 0) (0, + ) 0 (, 2) (2, + ) { a + b, kai 7, Raskite
DetaliauDVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst
DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, 0--. Magdalena Raseiniškė mėgsta pradėti bet kurį darbą tokiu uždaviniu, kurį, kaip ji sako,
DetaliauNeiškiliojo optimizavimo algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį
Neiškiliojo optimizavimo algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį. Albertas Gimbutas 2018 m. birželio 19 d. Vadovas: Prof. habil. dr. Antanas
DetaliauBUHALTERINĖ APSKAITA Dr. Stasys Peldžius 7 paskaita
BUHALTERINĖ APSKAITA Dr. Stasys Peldžius 7 paskaita TRUMPALAIKIO TURTO APSKAITA Fundamentinė apskaitos lygybė TURTAS = NUOSAVYBĖ + + Pajamos - Sąnaudos Ilgalaikis + trumpalaikis = Nuosavas + Įsipareigojimai
DetaliauEstijos bendrasis ugdymas –Socialiniai mokslai
Projektas Bendrojo ugdymo mokytojų bendrųjų ir dalykinių kompetencijų tobulinimas Projekto kodas 09.4.2-ESFA-V-715-02-0001. Informatikos mokymo kaitos tendencijos, poreikiai ir naujovės dr. Renata Burbaitė
DetaliauMicrosoft Word - SDH2.doc
PATVIRTINTA AB Lietuvos geleţinkeliai Geleţinkelių infrastruktūros direkcijos direktoriaus 2009-11-30 įsakymu Nr. Į (DI-161) SDH SĄSAJOS TECHNINIS APRAŠAS TURINYS I. BENDROJI DALIS... 4 II. TAIKYMO SRITIS...
DetaliauProjektas
PATVIRTINTA Kauno technologijos universiteto Lietuvos socialinių tyrimų centro Vytauto Didžiojo universiteto Sociologijos mokslo krypties doktorantūros komiteto 2017 m. birželio 6 d. posėdžio nutarimu
DetaliauPATVIRTINTA Lietuvos banko valdybos 2011 m. rugsėjo 1 d. nutarimu Nr (Lietuvos banko valdybos 2015 m. gegužės 28 d. nutarimo Nr redakci
PATVIRTINTA Lietuvos banko valdybos 2011 m. rugsėjo 1 d. nutarimu Nr. 03-144 (Lietuvos banko valdybos 2015 m. gegužės 28 d. nutarimo Nr. 03-90 redakcija) ATSAKINGOJO SKOLINIMO NUOSTATAI I SKYRIUS BENDROSIOS
DetaliauPardavimų aplikacija (Microsoft Dynamics AX (Axapta) sistemai) Diegimo instrukcija bifree.lt qlik.com
Pardavimų aplikacija (Microsoft Dynamics AX (Axapta) sistemai) Diegimo instrukcija bifree.lt qlik.com Microsoft Dynamics AX (Axapta) sistemai 2 Kaip įsidiegti Diegimo žingsniai: 1. Atsisiųsti ir įsidiegti
DetaliauAAA.AIEPI.Mokymu_medziaga_MOK_VI_07.Vandens_inventorizacijos_duomenu_tvarkymas.v.0.4
Informacinės sistemos eksploatacinė dokumentacija AIVIKS MOKYMO MEDŽIAGA 07. Vandens inventorizacijos duomenų tvarkymas Aplinkos apsaugos agentūra Aplinkosauginės informacijos elektroninių paslaugų išvystymas
DetaliauB I B L I O T E K O S N A U J I E N O S 2019 metai Prenumeruojami elektroniniai leidiniai : VGTU el. Knygos - Paiešką vykdyti per ebooks.vgtu.lt arba
B I B L I O T E K O S N A U J I E N O S 2019 metai Prenumeruojami elektroniniai leidiniai : VGTU el. Knygos - Paiešką vykdyti per ebooks.vgtu.lt arba per ALEPH katalogą. Baublys, Adolfas. Krovinių vežimas
DetaliauVARTOTOJO INSTRUKCIJA Daikin Altherma Žemos temperatūros "Split" šilumos siurblys
VARTOTOJO INSTRUKCIJA Daikin Altherma Žemos temperatūros "Split" šilumos siurblys Turinys Psl. 1. Bendrieji perspėjimai dėl darbo saugos 4 1.1. Apie dokumentaciją 4 1.1.1. Simbolių ir perspėjimų reikšmė
DetaliauSlide 1
LIMIS klasifikatoriai ir tezaurai Dalia Sirgedaitė, Lietuvos muziejų informacijos, skaitmeninimo ir LIMIS centras 2010 m. Kas yra klasifikacija? Klasifikacija įvairiarūšių objektų skirstymas grupėmis pagal
DetaliauProjektas
1 PRIEDAS PATVIRTINTA Vytauto Didžiojo universiteto Menotyros mokslo krypties doktorantūros komiteto 2019 m. gegužės 28 d. posėdžio nutarimu Nr.1 ATVIRO KONKURSO Į MENOTYROS MOKSLO KRYPTIES DOKTORANTŪROS
DetaliauPowerPoint Presentation
Pagrindiniai Lietuvos ateities iššūkiai Klaudijus Maniokas ESTEP valdybos pirmininkas Trys akcentai Pripažinti ir nepripažinti iššūkiai: konsensuso link Struktūrinių apirbojimų sprendimas: intervencijos
DetaliauPowerPoint Presentation
Duomenų archyvai ir mokslo duomenų valdymo planai 2018-06-13 1 Re3Data duomenų talpyklų registras virš 2000 mokslinių tyrimų duomenų talpyklų; talpyklos paiešką galima atlikti pagal mokslo kryptį, šalį,
DetaliauMicrosoft Word - Naudotojo gidas_aplikacijai_
Mokėjimų už automobilio stovėjimą, naudojantis programa m.parking išmaniuosiuose telefonuose, naudotojo gidas Puslapis 1 iš 10 Programa m.parking Vilniuje galima sumokėti vietinę rinkliavą tik už naudojimąsi
Detaliau„This research is funded by the European Social Fund under the Global Grant masure“
VERSLUMO KOMPETENCIJOS POREIKIS IR RAIŠKA VEIKLOJE Tarptautinė konferencija - 2015 SUAUGUSIŲJŲ BENDRŲJŲ KOMPETENCIJŲ MOKSLINIAI TYRIMAI IR PLĖTRA/ RESEARCH AND DEVELOPMENT OF KEY COMPETENCES FOR ADULTS
DetaliauPrekių pirkimo pardavimo taisyklės
Kursų ir seminarų pirkimo pardavimo svetainėje sportoakademija.lt taisyklės 1. Sąvokos 1.1. Pardavėjas Lietuvos Respublikos VĮ Registrų centras, Juridinių asmenų registro Kauno filiale įregistruotas privatusis
DetaliauDUOMENŲ TEIKIMO SUTARČIŲ REGISTRUI ELEKTRONINIU BŪDU
DUOMENŲ TEIKIMO SUTARČIŲ REGISTRUI ELEKTRONINIU BŪDU SUTARTIS NR. Valstybės įmonė Registrų centras (toliau Įmonė), atstovaujama generalinio direktoriaus Sauliaus Urbanavičiaus, veikiančio pagal Valstybės
DetaliauHISREP sutartis notarams
DUOMENŲ TEIKIMO LIETUVOS RESPUBLIKOS HIPOTEKOS REGISTRUI ELEKTRONINIU BŪDU SUTARTIS NR. Valstybės įmonė Registrų centras (toliau Įmonė), atstovaujama direktoriaus Sauliaus Urbanavičiaus, veikiančio pagal
DetaliauLIFE REWARDS PLAN Jūsų Life Rewards Plan vadovas EU_li LIETUVIŲ
LIFE REWARDS PLAN Jūsų Life Rewards Plan vadovas 101518 EU_li LIETUVIŲ Life Rewards Plan Šiame lankstinuke rasite informaciją apie tai, kaip Life Rewards Plan jums padeda užsidirbti. Be to, sužinosite
DetaliauLongse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP
Longse Wi-Fi kameros greito paleidimo instrukcija 1. Jums prireiks 1.1. Longse Wi-Fi kameros 1.2. Vaizdo stebėjimo kameros maitinimo šaltinio 1.3. UTP RJ-45 interneto kabelio 1.4. Kompiuterio su prieiga
DetaliauSlide 1
Projektų Elektroninių sąskaitų faktūrų posistemio (i.saf) sukūrimas ir Elektroninių važtaraščių posistemio (i.vaz) sukūrimas eiga. Geroji praktika Virginija Ginevičienė i.saf ir i.vaz projektų vadovė Mokestinių
Detaliau1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ
Vaizdu vidurkinimas ir požymiu išskyrimas. Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v (x) = + x ) e x, x (, ). () Čia yra filtro parametras. Kad
Detaliau