Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų
|
|
- Orestas Kazlauskas
- prieš 5 metus
- Peržiūrų:
Transkriptas
1 Atranka į 019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų skaičių seką a 1, a, a 3,..., o tada apibrėžė naują seką b 1, b, b 3,... tokiomis lygybėmis: b 1 = a 1, b = a, b n = a n b n 1 + b n visiems n 3. Ar galėjo Mykolas pradinę seką a 1, a, a 3,... parinkti taip, kad kiekvienas iš skaičių b 1, b, b 3,... būtų a) natūraliojo skaičiaus kvadratas? b) natūraliojo skaičiaus kubas? Sprendimas. Nagrinėkime a) P (x) = x ; b) P (x) = x 3. Abiem atvejais įrodysime, kad galima taip parinkti seką a 1, a, a 3,... ir natūraliųjų skaičių seką c 1 < c < c 3 <..., kad visiems n N galiotų b n = P (c n ). Vadinasi, abiem atvejais a) ir b) atsakymas teigiamas. (Pastebėkime, kad analogišką teiginį galima įrodyti ir bet kokiam daugianariui su sveikaisiais koeficientais P (x) = p d x d + + p 0, kur d ir p d N.) Funkcija P (x) x = x(x 1) arba (x 1)x(x + 1) yra neneigiama ir didėjanti, kai x [1, + ). Imkime c 1 = 1, c = ir a 1 = P (c 1 ), a = P (c ). Toliau imkime c n = P (c n 1 ) + c n ir a n = P (c n) P (c n ) P (c n 1 ) visiems n 3. Čia c n > P (c n 1 ) c n 1, kai n 3. Be to, a n N, nes skirtumas P (c n ) P (c n ) N dalijasi iš c n c n = P (c n 1 ) N. Belieka įrodyti, kad b n = P (c n ) visiems n N. Remkimės matematine indukcija. Indukcijos bazė: b n = a n = P (c n ), kai n = 1 ir n =. Indukcijos žingsnis: jei b k = P (c k ), kai k = n 1 ir k = n, tai b n = a n b n 1 + b n = P (c n) P (c n ) P (c n 1 ) + P (c n ) = P (c n ). P (c n 1 ) Atsakymas: a) taip; b) taip.
2 . Trikampio ABC pusiaukampinės kertasi taške I. Taškai M ir N atitinkamai kraštines AB ir AC dalija pusiau. Tiesės MN ir CI kertasi taške P. Pažymėtas toks taškas Q, kad tiesės MN ir P Q yra statmenos, o tiesės BI ir NQ lygiagrečios. Raskite kampą tarp tiesių AC ir IQ. Sprendimas. Tiesių AC ir IQ sankirtą pažymėkime D, o tiesių AI ir NQ sankirtą E (žr. pav.). Kadangi MN BC, tai NCP = BCP = CP N, trikampis CP N lygiašonis ir N P = N C = N A. Todėl P priklauso apskritimui su skersmeniu AC, o AP C = 90. Kadangi MN BC ir BI NQ, tai CBI = P NQ ir AIP = 180 AIC = CAI + ACI = BAC + ACB = 180 ABC = 90 CBI = 90 P NQ = P QN. Statieji trikampiai AIP ir NQP turi po lygų smailųjį kampą, todėl yra panašieji. Tada AIP = N QP ir IAP = QN P, o keturkampiai ANEP ir IQP E yra įbrėžtiniai. Vadinasi, CID = P IQ = P EQ = 180 P EN = P AN = Atsakymas: 90. = CAP = 90 ACP = 90 DCI, CDI = 180 CID DCI = 90. =
3 3. Duoti natūralieji skaičiai m ir n. Į šaškininkų sąskrydį atvyko 1m dalyvių. Jo metu kiekvienas dalyvis sulošė lygiai 3m + 6 šaškių partijas. Bet kurie du dalyviai tarpusavyje lošė daugiausiai vieną kartą. Bet kuriems dviem sąskrydžio dalyviams A ir B egzistuoja lygiai n kitų dalyvių, kurie lošė šaškėmis tiek su A, tiek su B. Raskite m ir n. Sprendimas. Nagrinėkime bet kurį vieną sąskrydžio dalyvį A. Dalyvių, su kuriais jis yra lošęs šaškėmis, aibę pažymėkime U, o dalyvių, su kuriais jis nėra lošęs šaškėmis, aibę V. Tada U = 3m + 6 ir V = 1m 1 U = 9m 7. Kiekvienam B U tie 3m + 6 dalyviai, su kuriais B lošė šaškėmis, taip pasiskirsto tarp aibių: vienas dalyvis A, n dalyvių aibėje U ir likę 3m + 5 n dalyvių aibėje V. Todėl tokių partijų, kurias lošė žmogus iš U ir žmogus iš V, yra iš viso (3m + 6)(3m + 5 n). Kiekvienam C V iš 3m + 6 dalyvių, su kuriais C lošė šaškėmis, n dalyvių yra aibėje U. Todėl tokių partijų, kurias lošė žmogus iš U ir žmogus iš V, yra iš viso (9m 7)n. Vadinasi, (3m + 6)(3m + 5 n) = (9m 7)n ir n = 3 3m + 11m m 1 Kadangi skaičiai 3 ir 1m 1 yra tarpusavyje pirminiai, tai 1m 1 dalija skaičių 4 (3m +11m+10) = (1m 1)(m+3)+9m+43, todėl ir skaičių 4(9m+43) = 3(1m 1)+175 bei skaičių 175 = 5 7. Jei m 15, tai 1m > 175, o jei 8 m 14, tai 175 < 1m 1 < 175. Be to, 175 nesidalija iš 1m 1, kai m = 1,, 4, 5, 6, 7. Vadinasi, m = 3 ir tada n = 6. Pastaba. Situacija m = 3 ir n = 6 yra įmanoma. Grafų teorijos kalba tai reiškia, kad egzistuoja stipriai reguliarus grafas srg(36, 15, 6, 6). Įrodyta, kad tokių skirtingų grafų iš viso yra net Atsakymas: m = 3, n = Apskritimai ω 1 ir ω kertasi dviejuose taškuose A ir B. Tiesės l 1 ir l eina per B ir kerta apskritimą ω 1 atitinkamai taškuose C ir E, o apskritimą ω atitinkamai taškuose D ir F (čia C, E, D, F B). Tiesė CF kerta ω 1 ir ω atitinkamai taškuose P C ir Q F. Lankų BP ir BQ, atitinkamai esančių ω ir ω 1 viduje, vidurio taškai atitinkamai pažymėti 3
4 4 M ir N. Įrodykite, kad jei CD = EF, tai taškai C, F, M, N priklauso vienam apskritimui. Sprendimas. Kadangi ADC = ADB = AF B = AF E ir ACD = ACB = AEB = AEF (įbrėžtiniai kampai; žr. pav.) bei CD = EF, tai ACD = AEF, AD = AF, o trikampis ADF yra lygiašonis. Todėl ABC = 180 ABD = AF D = ADF = ABF, o tiesė AB dalija CBF pusiau. Taškas M dalija lanką BP pusiau, todėl tiesė CM dalija BCF pusiau. Analogiškai tiesė F N yra dalija CF B pusiau. Trikampio BCF pusiaukampinės kertasi viename taške I. Pagal susikertančių stygų teoremą, CI IM = AI IB = F I IN. Todėl ir atkarpos CM bei F N tenkina šią teoremą, o jų galai C, F, M, N priklauso vienam apskritimui. 5. Natūralųjį skaičių n vadinsime penkiadaliu, jei jis turi tokius penkis skirtingus teigiamus daliklius, kurių ketvirtųjų laipsnių suma lygi n. (Skaičiai 1 ir n taip pat yra skaičiaus n dalikliai.)
5 a) Įrodykite, kad penkiadalis skaičius visada dalijasi iš 5. b) Nustatykite, ar yra be galo daug penkiadalių natūraliųjų skaičių. Sprendimas. a) Tarkime, kad egzistuoja penkiadalis skaičius n, nesidalijantis iš 5. Tada n turi tokius skirtingus teigiamus daliklius d 1, d, d 3, d 4, d 5, kad n = d d 4 + d d d 4 5. Kadangi n nesidalija iš 5, tai ir visi d i nesidalija iš 5. Remiantis Mažąja Ferma teorema, d 4 i 1 (mod 5), kai i = 1,..., 5. Tačiau tada n d d 4 + d d d (mod 5) ir n dalijasi iš 5. Gavome prieštarą. Vadinasi, visi penkiadaliai skaičiai dalijasi iš 5. b) Imkime bet kokius penkis skirtingus natūraliuosius skaičius a, b, c, d, e ir apibrėžkime n = a 4 b 4 c 4 d 4 e 4 (a 4 + b 4 + c 4 + d 4 + e 4 ). Tada n dalijasi iš 5 skiringų skaičių d 1 = a bcde, d = ab cde, d 3 = abc de, d 4 = abcd e, d 5 = abcde, ir n = d d 4 + d d d 4 5. Taigi, kiekvienas toks n yra penkiadalis skaičius. Didindami skaičius a, b, c, d, e, skaičių n galime padaryti kiek norima didelį, todėl penkiadalių skaičių yra be galo daug. Atsakymas: b) penkiadalių skaičių yra be galo daug. 6. Raskite: a) reiškinio ir (1 x)(1 y)(1 xy) didžiausią galimą reikšmę, kai x, y [ 1; 1]. b) reiškinio (1 x)(1 y)(1 z)(1 xy)(1 yz)(1 xyz) didžiausią galimą reikšmę, kai x, y, z [ 1; 1]. Sprendimas. a) Tarkime, kad x [0; 1] ir y [ 1; 1]. Tada (1 x)(1 xy) (1 x)(1 + x) = 1 x 1. (1 x)(1 y)(1 xy) 1 y. Nelygybė (1 x)(1 y)(1 xy) teisinga, ir kai x [ 1; 1], y [0; 1] (įrodoma analogiškai). Įrodysime šią nelygybę likusiu atveju x [ 1; 0) 5
6 6 ir y [ 1; 0). Pastebėję, kad ji virsta lygybe, kai x = 1, y = 0, gauname, kad ieškoma didžiausia reikšmė yra. Imkime bet kokį x [ 1; 0) ir nagrinėkime kvadratinę funkciją f(y) = (1 x)(1 y)(1 xy) intervale y [ 1; 0]. Aišku, kad šią funkciją atitinkančios parabolės viršūnė yra taškas (y 0 ; f(y 0 )), kur y 0 = (1 + x)/(x). Jei y 0 [ 1; 0), tai x ( 1; 1/3]. Tada nes (1 x)3 f(y) f(y 0 ) = 4x = (1 + x )3 4 x, ( x 1)(4 x 1) 0 = 5 x 4 x + 1 = 8 x x x + 3 x + 1 = (1 + x ) 3. (Nelygybę (1 x)3 galima įrodyti, ir pasinaudojus išvestine.) Jei 4x y 0 / [ 1; 0), tai arba f(y) f(0) = 1 x, arba f(y) f( 1) = = (1 x ). Vadinasi, f(y) visiems y [ 1; 0). b) Pažymėkime P = (1 x)(1 y)(1 z)(1 xy)(1 yz)(1 xyz). Visi dauginamieji P 1 = 1 x, P = 1 y, P 3 = 1 z, P 1, = 1 xy, P,3 = 1 yz ir P 1,,3 = 1 xyz priklauso intervalui [0, ]. Tarkime, kad P,3 P 1,. Remiantis a), P 1 P P 1, ir P 3 P 1, P 1,,3 (čia a) dalies reiškinyje imame z vietoj x ir xy vietoj y). Tada P = P 1 P P 3 P 1, P,3 P 1,,3 P 1 P P 1, P 3 P 1, P 1,,3 = 4. Analogiškai, kai P 1, P,3, tai P P P 3 P,3 P 1 P,3 P 1,,3 = 4. Vadinasi, visada P 4. Ieškoma didžiausia reikšmė ir yra 4, nes P įgyja šią reikšmę, kai x = z = 1 ir y = 0. Atsakymas: a) ; b) 4.
Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3)
Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių 11-12 klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) 4, 4 (5 6) 7, 7 (8 9) 10,..., 2014 (2015 2016) 2017.
DetaliauL I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V
L I T U V O S J U N Ų J Ų T T I K Ų O K Y K L. TRIKPIŲ ČVINOS (017 019) Teorinę medžiagą parengė ir antrąją užduotį sudarė Vilniaus universiteto docentas dmundas azėtis atematikos pamokose nagrinėjamos
Detaliau9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l
9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios
DetaliauDVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst
DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, 0--. Magdalena Raseiniškė mėgsta pradėti bet kurį darbą tokiu uždaviniu, kurį, kaip ji sako,
Detaliau* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak
1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra
Detaliau4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun
skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej
Detaliaulec10.dvi
paskaita. Euklido erdv_es. pibr_ezimas. Vektorin_e erdv_e E virs realiuju skaiciu kuno vadinama Euklido erdve, jeigu joje apibr_ezta skaliarin_e sandauga, t.y. tokia funkcija, kuri vektoriu porai u; v
Detaliau21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei
Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius reikės pasitelkti kūrybinį mąstymą ir pasinaudoti jau turimomis žiniomis, įgytomis per
DetaliauIII. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa
III SVEIKI NENEIGIAMI SKAIČIAI 31 Indukcijos aksioma Natūraliu aibės sa voka viena svarbiausiu matematikoje Nors natūralaus skaičiaus sa voka labai sena, bet šio skaičiaus buveinės sa voka buvo suformuluota
Detaliau10 Pratybos Oleg Lukašonok 1
10 Pratybos Oleg Lukašonok 1 2 Tikimybių pratybos 1 Lema Lema 1. Tegul {Ω, A, P} yra tikimybinė erdvė. Jeigu A n A, n N, tai i) P (lim sup A n ) = P ( k=1 n=k A n ) = lim P ( n k n=ka n ), nes n=ka n monotoniškai
DetaliauTeorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t
Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis
DetaliauVI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali
VI TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 61 Teoremos apie tolydžiu tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami realiu ju skaičiu savybes atkreipėme dėmesi i tokia šios aibės elementu
DetaliauPowerPoint Presentation
Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to
DetaliauLIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d
LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant
DetaliauGRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta
GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem. 2018 m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta grafų algoritmams, tačiau apibrėžus gretimumo matricą
DetaliauG E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys
G E O M E T R I J A Gediminas STEPANAUSKAS 016 09 1 Turinys 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir tieses plok²tumoje normalines lygtys 111 Vektorine forma 11 Koordinatine forma 3 1 Bendroji plok²tumos
DetaliauLMR200.dvi
Liet. matem. rink, 47, spec. nr., 27, 259 267 Lietuvos moksleiviu matematikos olimpiados 7 uždaviniuapžvalga Juozas Juvencijus MAČYS (MII) el. paštas: jmacys@ktl.mii.lt 56-oji Lietuvos moksleiviu matematikos
DetaliauMicrosoft PowerPoint Ekstremumai_naujas
Kelių kintamųjų funkcijos lokalūs ekstremumai. Ekstremumų egzistavimo būtina ir pakankama sąlygos. Sąlyginiai ekstremumai. Lagranžo daugikliai. Didžiausioji ir mažiausioji funkcijos reikšmės uždaroje srityje.
DetaliauTAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee
001 x 1 2 + x + 12 lim x 4 2x 1 2; 0; 2 1 2; 5 1; 6 2; ; 1 2 4 riba neegzistuoja; 14x 2 2 + 29 lim x 1x 2 + 4x + 9 1 1; 2 29 9 ; ; 4 0; 5 riba neegzistuoja; 6 1 14; 14 1; 14 x + 1 lim x 4 x 4 1 riba neegzistuoja;
DetaliauMatricosDetermTiesLS.dvi
MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas
DetaliauPS_riba_tolydumas.dvi
Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos
DetaliauMATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at
MTEMTIKS BRNDS EGZMIN PRGRMS MINIMLIUS REIKLVIMUS ILIUSTRUJNTYS PVYZDŽII Egzamino programos minimalūs reikalavimai.. Paprastais atvejais patikrinti, ar duotoji seka ra aritmetinė/geometrinė progresija.
DetaliauDISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s},
DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, B 1 = {{i, p}, {i, e}, {z, e}, {u, e}, {u, s}}. Grafai
DetaliauPriedai_2016.indd
1 testo užduočių vertinimo kriterijai Užd. Nr. Sprendimas ar atsakymas Taškai Vertinimas 1 Pasirinktas variantas D 1 Už teisingą atsakymą. 2 a) 939 1 Už teisingą atsakymą. 2 b) 1538 1 Už teisingą atsakymą.
Detaliau(Microsoft Word - Pasiruo\360imas EE 10 KD-1)
-as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.
DetaliauAlgoritmø analizës specialieji skyriai
VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo
DetaliauPowerPoint Presentation
Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-28 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti.
DetaliauIsvestiniu_taikymai.dvi
IŠVESTINIŲ TAIKYMAI Pagrindinės analizės teoremos Monotoninės funkcijos išvestinė Funkcijos ekstremumai Funkcijos didžiausia ir mažiausia reikšmės intervale Kreivės iškilumas Funkcijos grafiko asimptotės
DetaliauXI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo
XI skyrius KŪNAI 1 Kūno sa voka 1 1 Šiame skyriuje nagrinėsime kūnus Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijos dėsniai, žymimi + ir, ir vadinami aibės k elementu sudėtimi
DetaliauPowerPoint Presentation
Nacionalinio egzaminų centro projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas (kodas VP1-2.1-ŠMM-01-V-03-003) 1 seminaras Dalykinių
Detaliau6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloniečių arba Herono algoritmas. Jau žiloje senovėje reikėjo mokėti traukti kavadratinę šaknį. Yra išlikęs
6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloiečių arba Heroo algoritmas. Jau žiloje seovėje reikėjo mokėti traukti kavadratię šakį. Yra išlikęs Heroo iš Aleksadrijos gyveusio I mūsų eros amžiuje veikalas
DetaliauDISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf
DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas 001 1 Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp grafo ({q, w, r, g}, {{q, w}, {w, r}, {w, g}}) viršūnių
DetaliauSlide 1
Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje
DetaliauŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORT
ŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORTELĖ UŽDAVINIO NUMERIS TEISINGAS ATSAKYMAS. D. E. A
DetaliauAlgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul
lgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7. pibr eµzimas. Matrica yra m eiluµciu¾ir n stulpeliu¾turinti staµciakamp e lentel e su joje i¾rašytais
DetaliauTAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį.
00 Nustatykite funkcijos f() = +2 6 cos ( 3) apibrėžimo sritį (, 0) (0, 2) (2, + ) 2 (, 2) ( 2, + ) 3 (, 2] 4 [ 2, + ) 5 [2, ) 6 (, 2] 7 (, + ) 8 [ 2, 0) (0, + ) 0 (, 2) (2, + ) { a + b, kai 7, Raskite
DetaliauAlgoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF
Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna
DetaliauMicrosoft PowerPoint - SPACEOLYMP PRISTATYMAS Olimpiada Matematika [Compatibility Mode]
Nacionalinių ir tarptautinių mokslo olimpiadų dalyvių motyvacijos kosmoso tematika didinimas SPACEOLYMP 2016.01.01-2017.12.31 Projekto dalyvio atmintinė 2016-03-01 Iššūkiai 1) Informatika - programinė
DetaliauVigirdas Mackevičius 2. Sekos riba Paskaitu konspektas Intuityviai realiu ju skaičiu seka vadinama realiu ju skaičiu aibė, kurios elementai (vadinami
Vigirdas Mackevičius 2. Sekos riba Paskaitu kospektas Ituityviai realiu seka vadiama realiu aibė, kurios elemetai (vadiami sekos ariais) suumeruoti atūraliaisiais skaičiais (pradedat galbūt e vieetu, o
DetaliauMicrosoft PowerPoint Dvi svarbios ribos [Read-Only]
Dvi svarbios ribos Nykstamųjų funkcijų palyginimas. Ekvivalenčios nykstamosios funkcijos. Funkcijos tolydumo taške apibrėžimas. Tolydžiųjų funkcijų atkarpoje savybės. Trūkiosios funkcijos. Trūko taškų
DetaliauQR algoritmas paskaita
Turinys QR algoritmas 4 paskaita Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 4 5 TA skaitiniai metodai ( MIF VU) Tiesinių lygčių sistemų sprendimas / 40 TA skaitiniai
DetaliauAlgoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF
Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2016-02-15 Tiesinės duomenų struktūros Panagrinėsime keletą žinomų ir įvairiuose taikymuose naudojamų
DetaliauPrinting BaziniaiSprendiniai&KrastutiniaiTaskai.wxm
BaziniaiSprendiniai&KrastutiniaiTaskai.wxm / Baziniai sprendiniai ir kraštutiniai taškai (C) A.Domarkas, VU, 25 žr.: [] 2-252; [2] 9-98; [3] 33-; [] 89-98; [5] 6.3 Tegul tiesinių lygčių sistemos nežinomųjų
DetaliauSlide 1
Duomenų struktūros ir algoritmai 2 paskaita 2019-02-13 Algoritmo sąvoka Algoritmas tai tam tikra veiksmų seka, kurią reikia atlikti norint gauti rezultatą. Įvesties duomenys ALGORITMAS Išvesties duomenys
DetaliauSlide 1
Duomenų struktūros ir algoritmai 12 paskaita 2019-05-08 Norint kažką sukonstruoti, reikia... turėti detalių. 13 paskaitos tikslas Susipažinti su python modulio add.py 1.1 versija. Sukurti skaitmeninį modelį
DetaliauMagistro darbas
KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS KOMPIUTERIŲ KATEDRA Vitalijus Martusevičius Mikrosensorinio tinklo autolokacijos sistemos sudarymas ir tyrimas Magistro darbas Darbo vadovas prof.
DetaliauMicrosoft Word - I_k_ST_PR-2006.doc
Lietuvių kalbos egzamino programa Testu siekiama patikrinti raš ybos, skyrybos ir kalbos kultūros įgūdžius, žodžio dalių ir kalbos dalių mokė jimą, atidumą. Pastaba: skliausteliuose nurodomas vienas kitas
Detaliau2.3. FUNKCIJOS TOLYDUMAS 3.1. Pavyzdys. Nagrinėkime funkciją y = x, x > 0, taško x = 1 aplinkoje. Pradžiai pakeiskime kintamuosius x= 1+ h. Gausime fu
.3. FUNKCIJOS TOLYDUMAS 3.. Pvyzdys. Ngriėime fuciją y =, > 0, tšo = plioje. Prdžii peisime itmuosius = + h. Gusime fuciją y = + h, h>. Iešoime toios pirmojo lipsio fucijos y = + h, uri būtų didesė už
DetaliauPrinting triistr.wxmx
triistr.wxmx / Triįstrižainių lygčių sistemų sprendimas A.Domarkas, VU, Teoriją žr. []; [], 7-7; []. Pradžioje naudosime Gauso algoritmą, kuriame po įstrižaine daromi nuliai. Po to grįždami į viršų virš
DetaliauBASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikit
BASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikite aikštelės nuţymėjimą po baseinu, pašalinkite augalus,
DetaliauTyrimu projektas
Birutė Lisauskaitė (tyrėjo vardas, pavardė) Šv. Jono Nepomuko g. Nr. 132, Trakai, te. 8 620 12404, e-paštas elearai@takas.lt Kultūros paveldo departamentui prie Kultūros ministerijos (adresas pašto korespondencijai
Detaliau2019 m. nuostatai 02 01
Tvirtinu: Lietuvos šaškių federacijos viceprezidentė Romualda Šidlauskienė I. Tikslas ir uždaviniai: 2019 m. Lietuvos Respublikos šaškių čempionatų BENDRIEJI NUOSTATAI propaguoti šaškių sportą šalies gyventojų
DetaliauNISSAN NV200 techniniai duomenys ir spalvos LT-16C-0917
NISSAN NV200 techniniai duomenys ir spalvos 19.02.2018 19-02-2018 tipas Variklis ir emisijos m³ CO 2 (g/km) Kaina su 21% PVM EUR Furgonas Furgonas 1.5 dci 90AG 4,2 5 M/T Comfort 131 17 497 Furgonas 1.5
DetaliauGabių vaikų ugdymo mokymo priemonių dokumentas parengtas, įgyvendinant ES lėšomis finansuojamą projektą Gabių vaikų ugdymo efekytyvumo didinimas šviet
61 rogramos 1.5 temos nalizuoti ir prognozuoti vartotojų reakciją į kainų pokytį, remiantis paklausos elastingumu kainoms, ir gamintojų reakciją į kainų pokytį, remiantis pasiūlos elastingumu kainoms raplėtimas
Detaliau13/6 t. LT Europos Sąjungos oficialusis leidinys L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS TARYBOS DIREKTYVA 1979 m. gruodž
3 31980L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS 1980 2 15 TARYBOS DIREKTYVA 1979 m. gruodžio 20 d. dėl valstybių narių įstatymų, susijusių su matavimo vienetais, suderinimo ir Direktyvos 71/354/EEB
DetaliauInformacijosmokslai50-n.indd
ISSN 1392-0561 INFORMACIJOS MOKSLAI 2009 50 Tikimybinis dažnų posekių paieškos algoritmas Julija Pragarauskaitė Matematikos ir informatikos instituto doktorantė Institute of Mathematics and Informatics,
DetaliauSlide 1
Nr. VP1.-1.3-SADM-01-K-02-008 Įvadinio modulio tematikos trumpa apžvalga Bendrieji diskriminacijos pagrindai ir jų apraiškos Lyčių lygybės samprata, stereotipai Žiniasklaidos įtaka stereotipų formavimuisi
DetaliauNELLI
UAB AUKSVA P. Vaičaičio g., T-7 Šakiai ietuva Tel. +70 5 058 Faks. +70 5 057 El.p. info@lauksva.lt UŽDAOJI AKCINĖ BENDOVĖ www.lauksva.lt UŽDAOJI AKCINĖ BENDOVĖ GAMINIO PIVAUMAI: Modernus dizainas Jūsų
DetaliauMatematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tir
Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tiriant judėjimą, išreiškiamą priklausomybėmis tarp kintamųjų
DetaliauA
ALGORITMAI 14. Algoritmo sąvoka ir savybės Dirbdami kasdieninius darbus dažniausiai nesusimąstome, kokius veiksmus ir kokia tvarka atliekame. Apie tai pagalvojame, kai norime kokį nors darbą pavesti kitam.
DetaliauMokinių tiriamojo darbo įgūdžių formavimas
Mokinių tiriamojo darbo įgūdžių formavimas per programavimo pamokas ir projektinėje veikloje Renata Burbaitė Panevėţio Juozo Balčikonio gimnazija Tiriamasis darbas mokykloje: ugdo mokinių kritinį mąstymą;
DetaliauDuomenų vizualizavimas
Duomenų vizualizavimas Daugiamačių duomenų vizualizavimas: projekcijos metodai Aušra Mackutė-Varoneckienė Tomas Krilavičius 1 Projekcijos metodai Analizuojant daugiamačius objektus, kuriuos apibūdina n
DetaliauPowerPoint Presentation
Seminaras: Kokybės vadybos iniciatyvos viešajam sektoriui" Metodai kokybiškiems viešojo sektoriaus sprendimams sąnaudų ir naudos analizės pagrindai Jonas Jatkauskas Viešosios politikos ekspertas UAB BGI
Detaliau1. Matematinės dėlionės Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvai
Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvairias sprendimo galimybes. Prieš kiekvieną naujos rūšies dėlionę pateiktas pavyzdys,
DetaliauPowerPoint Presentation
XIII tarptautinės geografijos olimpiada Pekine. Pasiruošimas, užduočių analizė, įžvalgos. Pasiruošimas iki pasaulinės olimpiados Teminis pasiruošimas Techninis pasiruošimas Individualus darbas su mokiniais
Detaliau1.Kiekvieną mokymo(si) priemonių (reikmenų) rinkinį priešmokyklinio ugdymo klasėms sudaro: Eil Nr. Prekės pavadinimas Kiekis, vnt./komplekt ai 1. Sąsi
.Kiekvieną mokymo(si) priemonių (reikmenų) rinkinį priešmokyklinio ugdymo klasėms sudaro: Nr. Kiekis, vnt./komplekt ai. (Ryškiomis linijomis, su vidinėmis ir išorinėmis paraštėmis. Popierius turi būti
DetaliauVILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat
VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluation of Random Search Optimization Algorithms Magistro
DetaliauPedalBox sistema tinka žemiau išvardintoms transporto priemonėms. PedalBox greičio pedalo chip tuning sistema. Greitesnis atsakas į greičio pedalą ir
PedalBox sistema tinka žemiau išvardintoms transporto priemonėms. PedalBox greičio pedalo chip tuning sistema. Greitesnis atsakas į greičio pedalą ir sportiška charakteristika - iki 65% greitesnė reakcija.
DetaliauDB sukūrimas ir užpildymas duomenimis
DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio
DetaliauPofsajungu_gidas_Nr11.pdf
2 p. 3 p. 4 p. Šiame straipsnyje pristatoma profsąjungų svarba ir galimos jų veiklos kryptys, kovojant su diskriminacija darbo rinkoje. Ši profesinių sąjungų veiklos sritis reikšminga ne tik socialiai
DetaliauPaslaugų teikimo aprašymas
NACIONALINĖ ŽEMĖS TARNYBA PRIE ŽEMĖS ŪKIO MINISTERIJOS TVIRTINU: Nacionalinės žemės tarnybos prie Žemės ūkio ministerijos direktorė Daiva Gineikaitė 2015-06-30 NUOSAVYBĖS TEISIŲ Į ŽEMĘ (MIŠKĄ IR VANDENS
DetaliauDažniausios IT VBE klaidos
Dažniausios IT VBE klaidos Renata Burbaitė renata.burbaite@gmail.com Kauno technologijos universitetas, Panevėžio Juozo Balčikonio gimnazija 1 Egzamino matrica (iš informacinių technologijų brandos egzamino
DetaliauSKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS
SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS TURINYS KLUBO SĄNARIO 3D REKONSTRUKCIJA... 3 DUBENKAULIO 3D REKONSTRUKCIJA... 4 KELIO SĄNARIO 3D REKONSTRUKCIJA... 5 PETIES SĄNARIO 3D REKONSTRUKCIJA... 6 KAUKOLĖS
DetaliauVilniaus Universiteto Žygeivių Klubas
2013 m. KKT varžybų Vilniaus universiteto taurei laimėti Trasų schemos ir aprašymai Atrankinės trasos Detalus atrankinių trasų aiškinimas bus varžybų dieną prieš startą. Startas bus bendras visoms komandoms,
DetaliauVILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika (01P
VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika 0P) Vilnius, 207 Disertacija rengta 20-207 metais Vilniaus
DetaliauVietos projektų, įgyvendinamų bendruomenių inicijuotos vietos plėtros būdu, administravimo taisyklių 3 priedas (Pavyzdinė Pirminės vietos projekto par
Vietos projektų, įgyvendinamų bendruomenių inicijuotos vietos plėtros būdu, administravimo taisyklių 3 priedas (Pavyzdinė Pirminės vietos projekto paraiškos, teikiamos pagal dvisektorę VPS, forma) PIRMINĖ
Detaliau1 PATVIRTINTA Valstybės įmonės Registrų centro direktoriaus 2018 m. gruodžio 20 d. įsakymu Nr. v-487 NEKILNOJAMOJO TURTO NORMATYVINĖS VERTĖS 2019 META
1 PATVIRTINTA Valstybės įmonės Registrų centro direktoriaus 2018 m. gruodžio 20 d. įsakymu Nr. v-487 NEKILNOJAMOJO TURTO NORMATYVINĖS VERTĖS 2019 METAMS MIESTUOSE Eil. Nr. Masinio nekilnojamojo turto vertinimo
DetaliauMicrosoft Word - Fasadiniai_pastoliai_SL70_naudojimo_instrukcija_LT.doc
prie leidimo pažymos Z-8.1-29 1 psl. 1. Bendroji dalis 1.1 Universalieji pastoliai SL70 yra iš gatavų konstrukcijų surenkami plieno karkaso pastoliai, kurių sisteminis plotis yra 0,74 m. Sekcijų ilgiai
DetaliauEUROPOS KOMISIJA Briuselis, C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) / dėl bendros sistemos techninių standa
EUROPOS KOMISIJA Briuselis, 2017 07 11 C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) /... 2017 07 11 dėl bendros sistemos techninių standartų ir formatų, kad EURES portale būtų galima susieti
DetaliauVABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450)
VABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450) 54275 El.p.rastine@vabalninko.birzai.lm.lt. GIMNAZIJOS VEIKLOS KOKYBĖS ĮSIVERTINIMO
DetaliauDiferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas.
Turinys Diferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas. Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 2017-05-29 Egzamino klausimai: 1) Diferencialinės
DetaliauPrivalomai pasirenkamas istorijos modulis istorija aplink mus I dalis _suredaguotas_
P R O J E K T A S VP1-2.2-ŠMM-04-V-01-001 MOKYMOSI KRYPTIES PASIRINKIMO GALIMYBIŲ DIDINIMAS 14-19 METŲ MOKINIAMS, II ETAPAS: GILESNIS MOKYMOSI DIFERENCIJAVIMAS IR INDIVIDUALIZAVIMAS, SIEKIANT UGDYMO KOKYBĖS,
DetaliauRekomendacijos vietinės reikšmės kelių su žvyro danga taisymui
Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui LAKD TNT skyriaus vedėjas Evaldas Petrikas Reglamentavimas Automobilių kelių standartizuotų dangų konstrukcijų projektavimo taisyklės KPT
DetaliauPIRAMIDĖ yra atskira biliardo šaka, turinti savo taisykles ir biliardo įrangos reikalavimus. Vyksta oficialios šių ţaidimų varţybos: 1. LAISVOJI PIRAM
PIRAMIDĖ yra atskira biliardo šaka, turinti savo taisykles ir biliardo įrangos reikalavimus. Vyksta oficialios šių ţaidimų varţybos: 1. LAISVOJI PIRAMIDĖ 2. KOMBINUOTA PIRAMIDĖ 3. DINAMIŠKOJI PIRAMIDĖ
DetaliauKAUNO JONO PAULIAUS II GIMNAZIJA TVIRTINU Gimnazijos direktorė Ramutė Latvelienė 2019 M. KOVO MĖNESIO 1-4 KLASIŲ VEIKLOS PLANAS Diena Sav. diena Val.
KAUNO JONO PAULIAUS II GIMNAZIJA TVIRTINU Gimnazijos direktorė Ramutė Latvelienė 2019 M. KOVO MĖNESIO 1-4 KLASIŲ VEIKLOS PLANAS Diena Sav. diena Val. Renginio pavadinimas Koordinatorius Dalyvauja Vieta
DetaliauVERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA
PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 2007 m. rugsėjo 6 d. įsakymu Nr. ISAK-1790 VERSLO IR VADYBOS TECHNOLOGIJŲ BENDROJI PROGRAMA MOKINIAMS, BESIMOKANTIEMS PAGAL VIDURINIO UGDYMO
DetaliauPrinting AtvirkstineMatrica.wxmx
AtvirkstineMatrica.wxmx / Atvirkštinė matrica A.Domarkas, VU, Teoriją žr. [], 8-; []. Figure : Toliau pateiksime atvirkštinės matricos apskaičiavimo būdus su CAS Maxima. su komanda invert pavyzdys. [],
DetaliauMicrosoft Word - Paslauga _leidimai išvezti iš LR_ Į-29 AP-15.doc
PATVIRTINTA Kultūros paveldo departamento prie Kultūros ministerijos direktoriaus 2014 m. vasario 5 d. įsakymu Nr. Į-29 KULTŪROS PAVELDO DEPARTAMENTO PRIE KULTŪROS MINISTERIJOS ADMINISTRACINĖS PASLAUGOS
DetaliauProjektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr
Studijų programos aprašas Studijų programos pavadinimas Informatika Aukštojo mokslo institucija (-os), padalinys (-iai) Vilniaus universitetas, Matematikos ir informatikos fakultetas, Informatikos katedra
DetaliauTIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil
TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų
DetaliauJurbarko r. Skirsnemunės Jurgio Baltrušaičio pagrindinės mokyklos direktorės Dainoros Saulėnienės 2018 METŲ VEIKLOS ATASKAITA Nr. 1 Skirsne
Jurbarko r. Skirsnemunės Jurgio Baltrušaičio pagrindinės mokyklos direktorės Dainoros Saulėnienės 2018 METŲ VEIKLOS ATASKAITA 2019-01-18 Nr. 1 Skirsnemunė I SKYRIUS STRATEGINIO PLANO IR METINIO VEIKLOS
Detaliau1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ
Vaizdu vidurkinimas ir požymiu išskyrimas. Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v (x) = + x ) e x, x (, ). () Čia yra filtro parametras. Kad
DetaliauTelšių rajono Žarėnų Minijos vidurinės mokyklos Mokinių, dalyvavusių respublikinėse olimpiadose, konkursuose, čempionatuose sąrašas ( mokslo
Telšių rajono Žarėnų Minijos vidurinės mokyklos Mokinių, dalyvavusių respublikinėse olimpiadose, konkursuose, čempionatuose sąrašas (2014-2015 mokslo metai) Nr. Olimpiados, konkurso, čempionato pavadinimas
DetaliauMicrosoft Word - 8 Laboratorinis darbas.doc
Laboratorinis darbas Nr. 8 MOP (metalo sido puslaidininkio) struktūrų tyrimas aukštadažniu -V charakteristikų metodu Darbo tikslas: 1. Nustatyti puslaidininkio laidumo tipą. 2. Nustatyti legiravimo priemaišų
DetaliauMODENA MODENA midi MODENA mini Techninės charakteristikos ir instrukcijos 2018
MODENA MODENA midi MODENA mini Techninės charakteristikos ir instrukcijos 08 Turinys MODENA Sistemos MODENA, MODENA HIDE charakteristikos Sistemos MODENA, MODENA HIDE sudedamosios dalys MODENA HIDE sistemos
DetaliauMercedes-Benz Actros MP PRIEKINIS ŽIBINTAS DB ACTROS(9/96-9/03) (BE POSŪKIO, BE HALOGENO) D.P. PRIEKINIS ŽIBINTAS DB
Mercedes-Benz Actros MP1 5000648 5001089 5003111 5003112 PRIEKINIS ŽIBINTAS DB ACTROS(9/96-9/03) (BE POSŪKIO, BE HALOGENO) D.P. PRIEKINIS ŽIBINTAS DB ACTROS(9/96-9/03) (BE POSŪKIO, BE HALOGENŲ) K.P. PRIEKINIS
DetaliauN E K I L N O J A M O J O T U R T O R I N K O S D A L Y V I Ų A P K L A U S O S A P Ž V A L G A / 2 NAMŲ ŪKIŲ FINANSINĖS ELG- SENOS APKLAUSOS
NAMŲ ŪKIŲ FINANSINĖS ELG- SENOS APKLAUSOS APŽVALGA 1 NEKILNOJAMOJO TURTO RINKOS DALYVIŲ APKLAUSOS APŽVALGA 213 217 m. I ketvirtis 213 ISSN 2424-5828 (ONLINE) 2 NEKILNOJAMOJO TURTO RINKOS DALYVIŲ APKLAUSOS
DetaliauPowerPoint Presentation
SPRENDIMAI ENERGIŠKAI EFEKTYVIEMS PASTATAMS Reikalavimai A+ energinio naudingumo klasės gyvenamiesiems pastatams IKI 2019 02 01 NUO 2019 02 01 0,25 C 1 0,375; C 2 0,80 Pastato (jo dalies) energijos vartojimo
Detaliau