Microsoft PowerPoint Ekstremumai_naujas

Dydis: px
Rodyti nuo puslapio:

Download "Microsoft PowerPoint Ekstremumai_naujas"

Transkriptas

1 Kelių kintamųjų funkcijos lokalūs ekstremumai. Ekstremumų egzistavimo būtina ir pakankama sąlygos. Sąlyginiai ekstremumai. Lagranžo daugikliai. Didžiausioji ir mažiausioji funkcijos reikšmės uždaroje srityje.

2 Būtinos ekstremumo sąlygos Tarkime, kad =, yradviejų kintamųjų funkcija, apibrėžta srityje D, o (, )vidinis srities Dtaškas. Ap. Taškas vadinamas funkcijos =, lokaliojo maksimumo (minimumo) tašku, jei yra tokia taško aplinka, kurios visuose taškuose teisinga nelygybė,, ; (, ),. Kadangi,, =,tai taške M 0 yra maksimumas (minimumas), kai 0 z 0. Maksimumas ir minimumas kartu vadinami ekstremumais.

3 Būtinos ekstremumo sąlygos Teorema. Jei taškas (, )yra diferencijuojamos funkcijos =, ekstremumas, tai ( ) =0, ( ) = 0. Ekstremumas gali būti tik taškuose, kuriuose funkcijos pirmosios dalinės išvestinės lygios nuliui(arba kuriuose bent viena pirmoji dalinėišvestinėneegzistuoja). Tokie taškai vadinami kritiniais funkcijos taškais. Šios sąlygos yra tik būtinos, bet ne pakankamos funkcijos ekstremumo salygos.

4 Pakankamos ekstremumo sąlygos Tarkime, kad funkcija = (, ) yra apibrėžta, tolydi ir turi tolydžias pirmosirantroseilės dalinesišvestinestaško 0 ( 0 ; 0 ) aplinkoje, o pats taškas 0 yrakritinis, t.y. Pažymėkime: (, ) =0, ((, ) =0. A= (, ) ; = (, ) ;C = (, ) Teorema. Jeigu 2 > 0, tai taške 0 yraekstremumas: maksimumas, kai < 0, irminimumas, kai > 0. Jeigu 2 < 0, tai taške 0 ekstremumonėra. Jeigu 2 = 0, tai liekaneaiškuartaške 0 yraekstremumasar jo nėra. Pav. Rasti funkcijos =4 $ +4 $ + & ' ' 3 $ 16 ekstremumus. = 2 $ + $ + $

5 Sąlyginiai ekstremumai Apibrėžimas. Funkcijos = (,) ekstremumai, kaikintamiejiir susieti tam tikra lygtimi ϕ(, ) = 0, vadinami sąlyginiais ekstremumais. Lygtisϕ(,) = 0 vadinamaryšiolygtimi. Sąlyginių ekstremumų radimo būdai. Tarkime, kad funkcijos (, ) ir ϕ(, ) ekstremumo taško aplinkoje turi tolydžias dalines išvestines. Iš ryšio lygties ϕ(,) = 0 vieną kurį nors kintamąjį išreiškiame kitu, pvz. =()ir įrašome į = (,). Tuomet gauname vieno kintamojo funkciją = (,()). Šios funkcijos ekstremumai yra duotosios funkcijos = (,) sąlyginiai ekstremumai, kai ϕ(,) = 0.

6 Sąlyginių ekstremumų radimo metodas: Lagranžo daugiklių metodas. Kai iš ryšio lygties negalima išreikšti vieno kintamojo kitu, tuomet sąlyginių ekstremumų radimui taikomas Lagranžo daugiklių metodas. Turime trijų kintamųjų funkciją: +,,, =, +λ-,. Ši funkcija vadinama Lagranžo funkcija, o argumentas λ-lagranžo daugikliu. Teorema.(Būtinos lokaliojo sąlyginio ekstremumo sąlygos) Sakykime, kad -(,),(,) yra tolydžiai diferencijuojamos taško 0 ( 0 ; 0 ) aplinkoje funkcijos ir.(, ) 0; jei taškas 0 ( 0 ; 0 ) yra funkcijos = (,)lokaliojo sąlyginio ekstremumo taškas, tai egzistuoja toks realus skaičius λ 0, kad 0 + 1,,λ = 0 + 1,,λ = 0 -, = 0.

7

8

9 Didžiausioji ir mažiausioji funkcijos reikšmės uždaroje srityje. Tarkime, kad funkcija = (, ) apibrėžta ir tolydi uždaroje srityje 2, apribotoje kreivės +, be to, diferencijuojama jos vidiniuose taškuose. Tuometpagalfunkcijosaprėžtumoteoremąyrataškai, kuriuosefunkcija =(,) įgyjadidžiausiąirmažiausiąreikšmes. Tai galibūtividiniaisritiestaškaiarbakreivės +taškai. Taigi, norėdami rasti uždaroje srityje didžiausiąją ir mažiausiąją funkcijos reikšmes ir 3, turime: rastisrities2 vidiniustaškus4 5, kuriuosefunkcijagaliįgyti ekstremumus; apskaičiuoti funkcijos reikšmes šiuose taškuose (45); rastikreivės +taškus6 7, kuriuosefunkcijagaliįgytisąlyginius ekstremumus, irapskaičiuotijųreikšmes (6 7 ); išskaičių(45)ir(6 7 )išrinktididžiausiąskaičiųirmažiausią skaičių 3.

10 Prioritetiniai teorijos klausimai Dviejų vektorių vektorinė sandauga, jos savybės, apskaičiavimas ir geometrinė prasmė. Trijų vektorių mišrioji sandauga, jos savybės, apskaičiavimas ir geometrinė prasmė. Bendroji plokštumos lygtis. Tiesės erdvėje kanoninės ir parametrinės lygtys. Tiesės einančios per du taškus, lygtis. Antrosios eilės kreivės: apskritimas, elipsė, hiperbolė, parabolė. Funkcijos riba taške. Vienpusės ribos. Funkcijos tolydumo taške apibrėžimas. Trūkiosios funkcijos. Trūkio taškų tipai. Diferencijuojamos funkcijos apibrėžimas, jos tolydumas. Diferencialas ir jo savybės. Diferencialo formos invariantiškumas. Funkcijos grafiko asimptotės.kreivės iškilumo intervalai ir perlinkio taškai Dalinės išvestinės. Sudėtinės funkcijos ir jų diferencijavimas. Neišreikštinės funkcijos diferencijavimas. Kryptinė išvestinė. Gradientas, jo savybės.

Isvestiniu_taikymai.dvi

Isvestiniu_taikymai.dvi IŠVESTINIŲ TAIKYMAI Pagrindinės analizės teoremos Monotoninės funkcijos išvestinė Funkcijos ekstremumai Funkcijos didžiausia ir mažiausia reikšmės intervale Kreivės iškilumas Funkcijos grafiko asimptotės

Detaliau

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra

Detaliau

Microsoft PowerPoint Dvi svarbios ribos [Read-Only]

Microsoft PowerPoint Dvi svarbios ribos [Read-Only] Dvi svarbios ribos Nykstamųjų funkcijų palyginimas. Ekvivalenčios nykstamosios funkcijos. Funkcijos tolydumo taške apibrėžimas. Tolydžiųjų funkcijų atkarpoje savybės. Trūkiosios funkcijos. Trūko taškų

Detaliau

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį.

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį. 00 Nustatykite funkcijos f() = +2 6 cos ( 3) apibrėžimo sritį (, 0) (0, 2) (2, + ) 2 (, 2) ( 2, + ) 3 (, 2] 4 [ 2, + ) 5 [2, ) 6 (, 2] 7 (, + ) 8 [ 2, 0) (0, + ) 0 (, 2) (2, + ) { a + b, kai 7, Raskite

Detaliau

PS_riba_tolydumas.dvi

PS_riba_tolydumas.dvi Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos

Detaliau

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali VI TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 61 Teoremos apie tolydžiu tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami realiu ju skaičiu savybes atkreipėme dėmesi i tokia šios aibės elementu

Detaliau

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant

Detaliau

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys G E O M E T R I J A Gediminas STEPANAUSKAS 016 09 1 Turinys 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir tieses plok²tumoje normalines lygtys 111 Vektorine forma 11 Koordinatine forma 3 1 Bendroji plok²tumos

Detaliau

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l 9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios

Detaliau

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis

Detaliau

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at MTEMTIKS BRNDS EGZMIN PRGRMS MINIMLIUS REIKLVIMUS ILIUSTRUJNTYS PVYZDŽII Egzamino programos minimalūs reikalavimai.. Paprastais atvejais patikrinti, ar duotoji seka ra aritmetinė/geometrinė progresija.

Detaliau

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų Atranka į 019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų skaičių seką a 1, a, a 3,..., o tada apibrėžė naują

Detaliau

(Microsoft Word - Pasiruo\360imas EE 10 KD-1)

(Microsoft Word - Pasiruo\360imas EE 10  KD-1) -as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.

Detaliau

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų

Detaliau

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3)

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių 11-12 klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) 4, 4 (5 6) 7, 7 (8 9) 10,..., 2014 (2015 2016) 2017.

Detaliau

1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ

1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ Vaizdu vidurkinimas ir požymiu išskyrimas. Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v (x) = + x ) e x, x (, ). () Čia yra filtro parametras. Kad

Detaliau

lec10.dvi

lec10.dvi paskaita. Euklido erdv_es. pibr_ezimas. Vektorin_e erdv_e E virs realiuju skaiciu kuno vadinama Euklido erdve, jeigu joje apibr_ezta skaliarin_e sandauga, t.y. tokia funkcija, kuri vektoriu porai u; v

Detaliau

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee 001 x 1 2 + x + 12 lim x 4 2x 1 2; 0; 2 1 2; 5 1; 6 2; ; 1 2 4 riba neegzistuoja; 14x 2 2 + 29 lim x 1x 2 + 4x + 9 1 1; 2 29 9 ; ; 4 0; 5 riba neegzistuoja; 6 1 14; 14 1; 14 x + 1 lim x 4 x 4 1 riba neegzistuoja;

Detaliau

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa III SVEIKI NENEIGIAMI SKAIČIAI 31 Indukcijos aksioma Natūraliu aibės sa voka viena svarbiausiu matematikoje Nors natūralaus skaičiaus sa voka labai sena, bet šio skaičiaus buveinės sa voka buvo suformuluota

Detaliau

6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloniečių arba Herono algoritmas. Jau žiloje senovėje reikėjo mokėti traukti kavadratinę šaknį. Yra išlikęs

6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloniečių arba Herono algoritmas. Jau žiloje senovėje reikėjo mokėti traukti kavadratinę šaknį. Yra išlikęs 6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloiečių arba Heroo algoritmas. Jau žiloje seovėje reikėjo mokėti traukti kavadratię šakį. Yra išlikęs Heroo iš Aleksadrijos gyveusio I mūsų eros amžiuje veikalas

Detaliau

MatricosDetermTiesLS.dvi

MatricosDetermTiesLS.dvi MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas

Detaliau

10 Pratybos Oleg Lukašonok 1

10 Pratybos Oleg Lukašonok 1 10 Pratybos Oleg Lukašonok 1 2 Tikimybių pratybos 1 Lema Lema 1. Tegul {Ω, A, P} yra tikimybinė erdvė. Jeigu A n A, n N, tai i) P (lim sup A n ) = P ( k=1 n=k A n ) = lim P ( n k n=ka n ), nes n=ka n monotoniškai

Detaliau

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm BaziniaiSprendiniai&KrastutiniaiTaskai.wxm / Baziniai sprendiniai ir kraštutiniai taškai (C) A.Domarkas, VU, 25 žr.: [] 2-252; [2] 9-98; [3] 33-; [] 89-98; [5] 6.3 Tegul tiesinių lygčių sistemos nežinomųjų

Detaliau

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej

Detaliau

QR algoritmas paskaita

QR algoritmas paskaita Turinys QR algoritmas 4 paskaita Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 4 5 TA skaitiniai metodai ( MIF VU) Tiesinių lygčių sistemų sprendimas / 40 TA skaitiniai

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to

Detaliau

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluation of Random Search Optimization Algorithms Magistro

Detaliau

Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tir

Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tir Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tiriant judėjimą, išreiškiamą priklausomybėmis tarp kintamųjų

Detaliau

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo XI skyrius KŪNAI 1 Kūno sa voka 1 1 Šiame skyriuje nagrinėsime kūnus Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijos dėsniai, žymimi + ir, ir vadinami aibės k elementu sudėtimi

Detaliau

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul lgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7. pibr eµzimas. Matrica yra m eiluµciu¾ir n stulpeliu¾turinti staµciakamp e lentel e su joje i¾rašytais

Detaliau

Gabių vaikų ugdymo mokymo priemonių dokumentas parengtas, įgyvendinant ES lėšomis finansuojamą projektą Gabių vaikų ugdymo efekytyvumo didinimas šviet

Gabių vaikų ugdymo mokymo priemonių dokumentas parengtas, įgyvendinant ES lėšomis finansuojamą projektą Gabių vaikų ugdymo efekytyvumo didinimas šviet 61 rogramos 1.5 temos nalizuoti ir prognozuoti vartotojų reakciją į kainų pokytį, remiantis paklausos elastingumu kainoms, ir gamintojų reakciją į kainų pokytį, remiantis pasiūlos elastingumu kainoms raplėtimas

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 12 paskaita 2019-05-08 Norint kažką sukonstruoti, reikia... turėti detalių. 13 paskaitos tikslas Susipažinti su python modulio add.py 1.1 versija. Sukurti skaitmeninį modelį

Detaliau

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V L I T U V O S J U N Ų J Ų T T I K Ų O K Y K L. TRIKPIŲ ČVINOS (017 019) Teorinę medžiagą parengė ir antrąją užduotį sudarė Vilniaus universiteto docentas dmundas azėtis atematikos pamokose nagrinėjamos

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje

Detaliau

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2016-02-15 Tiesinės duomenų struktūros Panagrinėsime keletą žinomų ir įvairiuose taikymuose naudojamų

Detaliau

Priedai_2016.indd

Priedai_2016.indd 1 testo užduočių vertinimo kriterijai Užd. Nr. Sprendimas ar atsakymas Taškai Vertinimas 1 Pasirinktas variantas D 1 Už teisingą atsakymą. 2 a) 939 1 Už teisingą atsakymą. 2 b) 1538 1 Už teisingą atsakymą.

Detaliau

PowerPoint Presentation

PowerPoint Presentation Duomenų archyvai ir mokslo duomenų valdymo planai 2018-06-13 1 Re3Data duomenų talpyklų registras virš 2000 mokslinių tyrimų duomenų talpyklų; talpyklos paiešką galima atlikti pagal mokslo kryptį, šalį,

Detaliau

Vigirdas Mackevičius 2. Sekos riba Paskaitu konspektas Intuityviai realiu ju skaičiu seka vadinama realiu ju skaičiu aibė, kurios elementai (vadinami

Vigirdas Mackevičius 2. Sekos riba Paskaitu konspektas Intuityviai realiu ju skaičiu seka vadinama realiu ju skaičiu aibė, kurios elementai (vadinami Vigirdas Mackevičius 2. Sekos riba Paskaitu kospektas Ituityviai realiu seka vadiama realiu aibė, kurios elemetai (vadiami sekos ariais) suumeruoti atūraliaisiais skaičiais (pradedat galbūt e vieetu, o

Detaliau

Duomenų vizualizavimas

Duomenų vizualizavimas Duomenų vizualizavimas Daugiamačių duomenų vizualizavimas: projekcijos metodai Aušra Mackutė-Varoneckienė Tomas Krilavičius 1 Projekcijos metodai Analizuojant daugiamačius objektus, kuriuos apibūdina n

Detaliau

13/6 t. LT Europos Sąjungos oficialusis leidinys L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS TARYBOS DIREKTYVA 1979 m. gruodž

13/6 t. LT Europos Sąjungos oficialusis leidinys L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS TARYBOS DIREKTYVA 1979 m. gruodž 3 31980L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS 1980 2 15 TARYBOS DIREKTYVA 1979 m. gruodžio 20 d. dėl valstybių narių įstatymų, susijusių su matavimo vienetais, suderinimo ir Direktyvos 71/354/EEB

Detaliau

Magistro darbas

Magistro darbas KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS KOMPIUTERIŲ KATEDRA Vitalijus Martusevičius Mikrosensorinio tinklo autolokacijos sistemos sudarymas ir tyrimas Magistro darbas Darbo vadovas prof.

Detaliau

LMR200.dvi

LMR200.dvi Liet. matem. rink, 47, spec. nr., 27, 259 267 Lietuvos moksleiviu matematikos olimpiados 7 uždaviniuapžvalga Juozas Juvencijus MAČYS (MII) el. paštas: jmacys@ktl.mii.lt 56-oji Lietuvos moksleiviu matematikos

Detaliau

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem. 2018 m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta grafų algoritmams, tačiau apibrėžus gretimumo matricą

Detaliau

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna

Detaliau

BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS

BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS BALSO SKAMBUČIŲ UŽBAIGIMO JUDRIOJO RYŠIO TINKLE SĄNAUDŲ APSKAIČIAVIMO PAAIŠKINIMAS IR SKAMBUČIŲ INICIJAVIMO SĄNAUDŲ SKAIČIAVIMO PRINCIPŲ PAAIŠKINIMAS I. ĮŽANGA Lietuvos Respublikos ryšių reguliavimo tarnybos

Detaliau

Henrikas PRANEVIČIUS, Šarūnas RAUDYS, Algimantas RUDŽIONIS, Vytautas RUDŽIONIS, Kastytis RATKEVIČIUS, Jūratė SAKALAUSKAITĖ, Dalius MAKACKAS Agentinių

Henrikas PRANEVIČIUS, Šarūnas RAUDYS, Algimantas RUDŽIONIS, Vytautas RUDŽIONIS, Kastytis RATKEVIČIUS, Jūratė SAKALAUSKAITĖ, Dalius MAKACKAS Agentinių Henrikas PRANEVIČIUS, Šarūnas RAUDYS, Algimantas RUDŽIONIS, Vytautas RUDŽIONIS, Kastytis RATKEVIČIUS, Jūratė SAKALAUSKAITĖ, Dalius MAKACKAS Agentinių sistemų modeliai 2008 UDK Vadovėlis išleistas vykdant

Detaliau

Lietuvos korupcijos žemėlapis m. GYVENTOJŲ IR VERSLO ATSTOVŲ KORUPCIJOS VERTINIMŲ IR PATIRTIES TYRIMAI

Lietuvos korupcijos žemėlapis m. GYVENTOJŲ IR VERSLO ATSTOVŲ KORUPCIJOS VERTINIMŲ IR PATIRTIES TYRIMAI Lietuvos korupcijos žemėlapis - 2004 m. GYVENTOJŲ IR VERSLO ATSTOVŲ KORUPCIJOS VERTINIMŲ IR PATIRTIES TYRIMAI Tyrimų rėmėjai: Jungtinių Tautų vystymo programa Lietuvos pramonininkų konfederacija Lietuvos

Detaliau

5_3 paskaita

5_3 paskaita EKONOMIKOS INŽINERIJA Parengė: doc. dr. Vilda Gižienė 4. PRODUKTO GAMYBOS TECHNOLOGIJA Temos: 4.7.Įmonės pelnas ir jo maksimizavimas 4.7.1. Konkuruojančios firmos pajamos. 4.7.2. Pelno maksimizavimas trumpuoju

Detaliau

VALSTYBINĖ KAINŲ IR ENERGETIKOS KONTROLĖS KOMISIJA NUTARIMAS DĖL AB ENERGIJOS SKIRSTYMO OPERATORIUS ELEKTROS ENERGIJOS PERSIUNTIMO PASLAUGOS KAINŲ IR

VALSTYBINĖ KAINŲ IR ENERGETIKOS KONTROLĖS KOMISIJA NUTARIMAS DĖL AB ENERGIJOS SKIRSTYMO OPERATORIUS ELEKTROS ENERGIJOS PERSIUNTIMO PASLAUGOS KAINŲ IR VALSTYBINĖ KAINŲ IR ENERGETIKOS KONTROLĖS KOMISIJA NUTARIMAS DĖL AB ENERGIJOS SKIRSTYMO OPERATORIUS ELEKTROS ENERGIJOS PERSIUNTIMO PASLAUGOS KAINŲ IR JŲ TAIKYMO TVARKOS PASKELBIMO 2018 m. lapkričio 16

Detaliau

LIETUVOS RESPUBLIKOS FINANSŲ MINISTRAS ĮSAKYMAS DĖL FINANSŲ MINISTRO 2014 M. GRUODŽIO 30 D. ĮSAKYMO NR. 1K-499 DĖL METŲ EUROPOS SĄJUNGOS FON

LIETUVOS RESPUBLIKOS FINANSŲ MINISTRAS ĮSAKYMAS DĖL FINANSŲ MINISTRO 2014 M. GRUODŽIO 30 D. ĮSAKYMO NR. 1K-499 DĖL METŲ EUROPOS SĄJUNGOS FON LIETUVOS RESPUBLIKOS FINANSŲ MINISTRAS ĮSAKYMAS DĖL FINANSŲ MINISTRO 2014 M. GRUODŽIO 30 D. ĮSAKYMO NR. 1K-499 DĖL 2014 2020 METŲ EUROPOS SĄJUNGOS FONDŲ INVESTICIJŲ VEIKSMŲ PROGRAMOS STEBĖSENOS RODIKLIŲ

Detaliau

VALSTYBINĖ KAINŲ IR ENERGETIKOS KONTROLĖS KOMISIJA NUTARIMAS DĖL UAB LIETUVOS ENERGIJOS TIEKIMAS VISUOMENINIŲ ELEKTROS ENERGIJOS KAINŲ IR JŲ TAIKYMO T

VALSTYBINĖ KAINŲ IR ENERGETIKOS KONTROLĖS KOMISIJA NUTARIMAS DĖL UAB LIETUVOS ENERGIJOS TIEKIMAS VISUOMENINIŲ ELEKTROS ENERGIJOS KAINŲ IR JŲ TAIKYMO T VALSYBIĖ KAIŲ IR EERGEIKOS KOROLĖS KOMISIJA UARIMAS DĖL UAB LIEUVOS EERGIJOS IEKIMAS VISUOMEIIŲ ELEKROS EERGIJOS KAIŲ IR JŲ AIKYMO VARKOS PASKELBIMO 2018 m. lapkričio 30 d. r. O3E-418 Vilnius Vadovaudamasi

Detaliau

DB sukūrimas ir užpildymas duomenimis

DB sukūrimas ir užpildymas duomenimis DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio

Detaliau

VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika (01P

VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika (01P VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika 0P) Vilnius, 207 Disertacija rengta 20-207 metais Vilniaus

Detaliau

DĖL APLINKOS IR SVEIKATOS MOKSLO KOMITETO ĮSTEIGIMO

DĖL APLINKOS IR SVEIKATOS MOKSLO KOMITETO ĮSTEIGIMO LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS ĮSAKYMAS DĖL LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRO 011 M. KOVO D. ĮSAKYMO NR. V-199 DĖL LIETUVOS HIGIENOS NORMOS HN 80:011 ELEKTROMAGNETINIS

Detaliau

Ekonomikos inžinerijos studijų programos (valstybinis kodas: 612L10009) specializacijų aprašai Specializacija E-verslo ekonomika Specializaciją kuruoj

Ekonomikos inžinerijos studijų programos (valstybinis kodas: 612L10009) specializacijų aprašai Specializacija E-verslo ekonomika Specializaciją kuruoj Ekonomikos inžinerijos studijų programos (valstybinis kodas: 612L10009) specializacijų aprašai Specializacija E-verslo ekonomika Specializaciją kuruoja Verslo technologijų katedra, Tel.: 8 (5) 2744882,

Detaliau

Algoritmø analizës specialieji skyriai

Algoritmø analizës specialieji skyriai VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo

Detaliau

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas 001 1 Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp grafo ({q, w, r, g}, {{q, w}, {w, r}, {w, g}}) viršūnių

Detaliau

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s},

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, B 1 = {{i, p}, {i, e}, {z, e}, {u, e}, {u, s}}. Grafai

Detaliau

VISŲ TIPŲ IR GAMINTOJŲ MEMBRANINIAI DUJŲ SKAITIKLIAI 1. Skaitiklių savybės. Visų tipų ir gamintojų membraniniai dujų skaitikliai indikuoja vieną rodme

VISŲ TIPŲ IR GAMINTOJŲ MEMBRANINIAI DUJŲ SKAITIKLIAI 1. Skaitiklių savybės. Visų tipų ir gamintojų membraniniai dujų skaitikliai indikuoja vieną rodme VISŲ TIPŲ IR GAMINTOJŲ MEMBRANINIAI DUJŲ SKAITIKLIAI 1. Skaitiklių savybės. Visų tipų ir gamintojų membraniniai dujų skaitikliai indikuoja vieną rodmenį. Jeigu įrengtas tik membraninis dujų skaitiklis,

Detaliau

1

1 KAUNO TECHNOLOGIJOS UNIVERSITETAS MATEMATIKOS IR GAMTOS MOKSLŲ FAKULTETAS MATEMATINIO MODELIAVIMO KATEDRA Mindaugas Bražėnas APROKSIMAVIMAS FAZINIAIS SKIRSTINIAIS BEI JŲ TAIKYMAS APTARNAVIMO SISTEMOMS

Detaliau

UGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ

UGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ UGDYMO PLĖTOTĖS CENTRO DIREKTORIUS ĮSAKYMAS DĖL UGDYMO PLĖTOTĖS CENTRO DIREKTORIAUS 2016 M. VASARIO 29 D. ĮSAKYMO NR. VK-24 DĖL BENDROJO UGDYMO DALYKŲ VADOVĖLIŲ TURINIO VERTINIMO TVARKOS APRAŠO PATVIRTINIMO

Detaliau

LT Europos Sąjungos oficialusis leidinys L 79/11 DIREKTYVOS KOMISIJOS DIREKTYVA 2007/16/EB 2007 m. kovo 19 d. įgyvendinanti Tarybos direktyv

LT Europos Sąjungos oficialusis leidinys L 79/11 DIREKTYVOS KOMISIJOS DIREKTYVA 2007/16/EB 2007 m. kovo 19 d. įgyvendinanti Tarybos direktyv 2007 3 20 Europos Sąjungos oficialusis leidinys L 79/11 DIREKTYVOS KOMISIJOS DIREKTYVA 2007/16/EB 2007 m. kovo 19 d. įgyvendinanti Tarybos direktyvą 85/611/EEB dėl įstatymų ir kitų teisės aktų, susijusių

Detaliau

Microsoft Word - Liuminescencija_teorija

Microsoft Word - Liuminescencija_teorija 2. BOLOGNŲ OBJEKTŲ LUMNESCENCJA. 2.1 Įvadas. Liuminescencijos reiškinys Daugelis fotofizikinių ir fotocheminių vyksmų yra šviesos sąveikos su bioobjektu pasekmės. Vienas iš pagrindinių šviesos emisijos

Detaliau

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai MATLAB komandų seka, vadinama programa, įrašyta į failą. Vykdant skripto failą įvykdomos jame esančios komandos. Bus kalbama, kaip sukurti

Detaliau

8. Daugiakanalė sklaidos teorija Stipraus ryšio tarp kanalu metodas Nagrinėsime sklaidos procesa x + A x + A, x + A x + A, nenaudodami perturbaciju te

8. Daugiakanalė sklaidos teorija Stipraus ryšio tarp kanalu metodas Nagrinėsime sklaidos procesa x + A x + A, x + A x + A, nenaudodami perturbaciju te 8. Daugiakanalė sklaidos teorija Stipraus ryšio tarp kanalu metodas Nagrinėsime sklaidos procesa x + A x + A, x + A x + A, nenaudodami perturbaciju teorijos. Tegul ξ bus taikinio A vidiniu kintamu ju rinkinys,

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-28 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti.

Detaliau

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, 0--. Magdalena Raseiniškė mėgsta pradėti bet kurį darbą tokiu uždaviniu, kurį, kaip ji sako,

Detaliau

Diferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas.

Diferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas. Turinys Diferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas. Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 2017-05-29 Egzamino klausimai: 1) Diferencialinės

Detaliau

Socialiniai tinklai ir bendrinimas Dalyviai turės progą pagalvoti apie privatumą, kai internete bendrina informaciją ir bendrauja su kitais, o ypač, k

Socialiniai tinklai ir bendrinimas Dalyviai turės progą pagalvoti apie privatumą, kai internete bendrina informaciją ir bendrauja su kitais, o ypač, k Socialiniai tinklai ir bendrinimas Dalyviai turės progą pagalvoti apie privatumą, kai internete bendrina informaciją ir bendrauja su kitais, o ypač, kai naudojasi socialiniais tinklais. Dalyviai gebės

Detaliau

2013 m

2013 m 2019 m. Finansų olimpiada Regioninis etapas I-asis Finansų olimpiados etapas. Finansų žinių testas. (Iš viso 50 balų) Klausimams nuo 1 iki 21 apibraukite vieną teisingą atsakymą. Klausimams nuo 22 iki

Detaliau

Microsoft Word - Paslauga _leidimai išvezti iš LR_ Į-29 AP-15.doc

Microsoft Word - Paslauga _leidimai išvezti iš LR_ Į-29 AP-15.doc PATVIRTINTA Kultūros paveldo departamento prie Kultūros ministerijos direktoriaus 2014 m. vasario 5 d. įsakymu Nr. Į-29 KULTŪROS PAVELDO DEPARTAMENTO PRIE KULTŪROS MINISTERIJOS ADMINISTRACINĖS PASLAUGOS

Detaliau

Microsoft Word - Ch-vert-1-09.doc

Microsoft Word - Ch-vert-1-09.doc PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 009 m. birželio 6 d. įsakymu (..)-V-98 009 m. EMIJS VALSTYBINI BRANDS EGZAMIN UÞDUTIES VERTINIM INSTRUKIJA Kiekvienas I dalies klausimas vertinamas

Detaliau

PATVIRTINTA Mykolo Romerio universiteto Rektoriaus 2014 m. birželio 2 d. įsakymu Nr.1I-291 MYKOLO ROMERIO UNIVERSITETO LAIKINOSIOS STUDIJŲ REZULTATŲ Į

PATVIRTINTA Mykolo Romerio universiteto Rektoriaus 2014 m. birželio 2 d. įsakymu Nr.1I-291 MYKOLO ROMERIO UNIVERSITETO LAIKINOSIOS STUDIJŲ REZULTATŲ Į PATVIRTINTA Mykolo Romerio universiteto Rektoriaus 2014 m. birželio 2 d. įsakymu Nr.1I-291 MYKOLO ROMERIO UNIVERSITETO LAIKINOSIOS STUDIJŲ REZULTATŲ ĮVERTINIMO PATIKROS TVARKA I. BENDROSIOS NUOSTATOS 1.

Detaliau

Projektas

Projektas PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 2007 m. gegužės 23 d. Įsakymu Nr. ISAK 970 BENDROJO LAVINIMO UGDYMO TURINIO FORMAVIMO, VERTINIMO, ATNAUJINIMO IR DIEGIMO STRATEGIJA I. BENDROSIOS

Detaliau

Microsoft Word - 10 paskaita-red2004.doc

Microsoft Word - 10 paskaita-red2004.doc STATISTIKA FILOLOGAMS 10 paskaita STATISTINIAI KRITERIJAI 1. Statistiniai palyginimai ir statistinės hipotezės Jau ne kartą minėta, kad tyrinėtojui neretai prisieina ne vien tik aprašyti empirinius statistinius

Detaliau

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius reikės pasitelkti kūrybinį mąstymą ir pasinaudoti jau turimomis žiniomis, įgytomis per

Detaliau

LIETUVOS RESPUBLIKOS VYRIAUSYBĖ N U T A R I M A S DĖL VAIKO GLOBOS ORGANIZAVIMO NUOSTATŲ PATVIRTINIMO 2002 m. kovo 27 d. Nr. 405 Vilnius Vadovaudamasi

LIETUVOS RESPUBLIKOS VYRIAUSYBĖ N U T A R I M A S DĖL VAIKO GLOBOS ORGANIZAVIMO NUOSTATŲ PATVIRTINIMO 2002 m. kovo 27 d. Nr. 405 Vilnius Vadovaudamasi LIETUVOS RESPUBLIKOS VYRIAUSYBĖ N U T A R I M A S DĖL VAIKO GLOBOS ORGANIZAVIMO NUOSTATŲ PATVIRTINIMO 2002 m. kovo 27 d. Nr. 405 Vilnius Vadovaudamasi Lietuvos Respublikos civilinio kodekso (Žin., 2000,

Detaliau

EUROPOS SĄJUNGOS TAR YB A Briuselis, 2012 m. gruodžio 3 d. (04.12) (OR. en) 16889/12 Tarpinstitucinė byla: 2012/0339 (NLE) PECHE 505 PASIŪLYMAS nuo: E

EUROPOS SĄJUNGOS TAR YB A Briuselis, 2012 m. gruodžio 3 d. (04.12) (OR. en) 16889/12 Tarpinstitucinė byla: 2012/0339 (NLE) PECHE 505 PASIŪLYMAS nuo: E EUROPOS SĄJUNGOS TAR YB A Briuselis, 2012 m. gruodžio 3 d. (04.12) (OR. en) 16889/12 Tarpinstitucinė byla: 2012/0339 (NLE) PECHE 505 PASIŪLYMAS nuo: Europos Komisijos data: 2012 m. gruodžio 3 d. Komisijos

Detaliau

Microsoft Word - I_k_ST_PR-2006.doc

Microsoft Word - I_k_ST_PR-2006.doc Lietuvių kalbos egzamino programa Testu siekiama patikrinti raš ybos, skyrybos ir kalbos kultūros įgūdžius, žodžio dalių ir kalbos dalių mokė jimą, atidumą. Pastaba: skliausteliuose nurodomas vienas kitas

Detaliau

Printing AtvirkstineMatrica.wxmx

Printing AtvirkstineMatrica.wxmx AtvirkstineMatrica.wxmx / Atvirkštinė matrica A.Domarkas, VU, Teoriją žr. [], 8-; []. Figure : Toliau pateiksime atvirkštinės matricos apskaičiavimo būdus su CAS Maxima. su komanda invert pavyzdys. [],

Detaliau

SEB IL Brent nafta Platinimo laikotarpis INVESTICINIAI LAKŠTAI

SEB IL Brent nafta Platinimo laikotarpis INVESTICINIAI LAKŠTAI SEB IL Brent nafta Platinimo laikotarpis 2013 01 22 2013 02 04 INVESTICINIAI LAKŠTAI Su Brent naftos kaina susieti investiciniai lakštai Emisija SEB IL Brent nafta Platinimo laikotarpis 2013 m. sausio

Detaliau

Slide 1

Slide 1 Nr. VP1.-1.3-SADM-01-K-02-008 Įvadinio modulio tematikos trumpa apžvalga Bendrieji diskriminacijos pagrindai ir jų apraiškos Lyčių lygybės samprata, stereotipai Žiniasklaidos įtaka stereotipų formavimuisi

Detaliau

Privalomai pasirenkamas istorijos modulis istorija aplink mus I dalis _suredaguotas_

Privalomai pasirenkamas istorijos modulis istorija aplink mus I dalis  _suredaguotas_ P R O J E K T A S VP1-2.2-ŠMM-04-V-01-001 MOKYMOSI KRYPTIES PASIRINKIMO GALIMYBIŲ DIDINIMAS 14-19 METŲ MOKINIAMS, II ETAPAS: GILESNIS MOKYMOSI DIFERENCIJAVIMAS IR INDIVIDUALIZAVIMAS, SIEKIANT UGDYMO KOKYBĖS,

Detaliau

Šilumos sąnaudų vartotojams pasikeitimo dėl naujo Šilumos supirkimo iš nepriklausomų šilumos gamintojų tvarkos ir sąlygų aprašo skaičiavimas Eil. Nr.

Šilumos sąnaudų vartotojams pasikeitimo dėl naujo Šilumos supirkimo iš nepriklausomų šilumos gamintojų tvarkos ir sąlygų aprašo skaičiavimas Eil. Nr. Šilumos sąnaudų vartotojams pasikeitimo dėl naujo Šilumos supirkimo iš nepriklausomų šilumos gamintojų tvarkos ir sąlygų aprašo skaičiavimas Eil. Nr. Palyginamosioms sąnaudos pagal naują Aprašo projektą

Detaliau

2.3. FUNKCIJOS TOLYDUMAS 3.1. Pavyzdys. Nagrinėkime funkciją y = x, x > 0, taško x = 1 aplinkoje. Pradžiai pakeiskime kintamuosius x= 1+ h. Gausime fu

2.3. FUNKCIJOS TOLYDUMAS 3.1. Pavyzdys. Nagrinėkime funkciją y = x, x > 0, taško x = 1 aplinkoje. Pradžiai pakeiskime kintamuosius x= 1+ h. Gausime fu .3. FUNKCIJOS TOLYDUMAS 3.. Pvyzdys. Ngriėime fuciją y =, > 0, tšo = plioje. Prdžii peisime itmuosius = + h. Gusime fuciją y = + h, h>. Iešoime toios pirmojo lipsio fucijos y = + h, uri būtų didesė už

Detaliau

Projektas PATVIRTINTA Kvalifikacijų ir profesinio mokymo plėtros centro direktoriaus 2019 m. d. įsakymu Nr. NEKILNOJAMOJO TURTO OPERACIJŲ, FINANSINIŲ,

Projektas PATVIRTINTA Kvalifikacijų ir profesinio mokymo plėtros centro direktoriaus 2019 m. d. įsakymu Nr. NEKILNOJAMOJO TURTO OPERACIJŲ, FINANSINIŲ, Projektas PATVIRTINTA Kvalifikacijų ir profesinio mokymo plėtros centro direktoriaus 2019 m. d. įsakymu Nr. NEKILNOJAMOJO TURTO OPERACIJŲ, FINANSINIŲ, APSKAITOS IR DRAUDIMO PASLAUGŲ SEKTORIAUS PROFESINIS

Detaliau

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS ALEKSANDRO STULGINSKIO UNIVERSITETAS Agronomijos fakultetas Žemdirbystės katedra STUDIJŲ DALYKO APRAŠAS Dalyko kodas: AFŽEB07E Pavadinimas lietuvių kalba: Mokslinių tyrimų metodika Pavadinimas anglų kalba:

Detaliau

Europos Sąjungos Taryba Briuselis, 2015 m. liepos 8 d. (OR. en) Tarpinstitucinė byla: 2013/0309 (COD) 10409/1/15 REV 1 PRANEŠIMAS nuo: kam: Tarybos ge

Europos Sąjungos Taryba Briuselis, 2015 m. liepos 8 d. (OR. en) Tarpinstitucinė byla: 2013/0309 (COD) 10409/1/15 REV 1 PRANEŠIMAS nuo: kam: Tarybos ge Europos Sąjungos Taryba Briuselis, 2015 m. liepos 8 d. (OR. en) Tarpinstitucinė byla: 2013/0309 (COD) 10409/1/15 REV 1 PRANEŠIMAS nuo: kam: Tarybos generalinio sekretoriato Nuolatinių atstovų komitetui

Detaliau

Slide 1

Slide 1 Nuo ko pradėti investuoti? Aurimas Martišauskas auskas AB FMĮ FINASTA Direktorius Robertas Kijosakis Vargšai dirba dėl pinigų ir juos išleidžia, turtingųjų paslaptis gebėjimas pinigus priversti dirbti

Detaliau

COM(2017)221/F1 - LT

COM(2017)221/F1 - LT EUROPOS KOMISIJA Briuselis, 2017 05 08 COM(2017) 221 final 2017/0094 (NLE) Pasiūlymas TARYBOS SPRENDIMAS kuriuo nustatoma pozicija, kurios Europos Sąjungos vardu turi būti laikomasi Tarptautinėje vynuogių

Detaliau

LIETUVOS RESPUBLIKOS BIOMEDICININIŲ TYRIMŲ ETIKOS ĮSTATYMO NR. VIII-1679 PAKEITIMO ĮSTATYMAS 2015 m. rugsėjo 17 d. Nr. XII-1938 Vilnius 1 straipsnis.

LIETUVOS RESPUBLIKOS BIOMEDICININIŲ TYRIMŲ ETIKOS ĮSTATYMO NR. VIII-1679 PAKEITIMO ĮSTATYMAS 2015 m. rugsėjo 17 d. Nr. XII-1938 Vilnius 1 straipsnis. LIETUVOS RESPUBLIKOS BIOMEDICININIŲ TYRIMŲ ETIKOS ĮSTATYMO NR. VIII-1679 PAKEITIMO ĮSTATYMAS 2015 m. rugsėjo 17 d. Nr. XII-1938 Vilnius 1 straipsnis. Lietuvos Respublikos biomedicininių tyrimų etikos įstatymo

Detaliau

Terminai

Terminai SVEIKI ATVYKĘ!!! 2014-02-04 susitikimo programa 14.00 14.05 Susitikimo tikslai 14.05 14.20 PUP rengiamos temos išbandymo su vaikais rezultatai. Darbas temos rengimo grupėse 14.20 14.40 Išvadų pristatymas

Detaliau

Informacijosmokslai50-n.indd

Informacijosmokslai50-n.indd ISSN 1392-0561 INFORMACIJOS MOKSLAI 2009 50 Tikimybinis dažnų posekių paieškos algoritmas Julija Pragarauskaitė Matematikos ir informatikos instituto doktorantė Institute of Mathematics and Informatics,

Detaliau

Paslaugų teikimo aprašymas

Paslaugų teikimo aprašymas NACIONALINĖ ŽEMĖS TARNYBA PRIE ŽEMĖS ŪKIO MINISTERIJOS TVIRTINU: Nacionalinės žemės tarnybos prie Žemės ūkio ministerijos direktorė Daiva Gineikaitė 2015-06-30 NUOSAVYBĖS TEISIŲ Į ŽEMĘ (MIŠKĄ IR VANDENS

Detaliau

Leidinių medžiagos paruošimas spaudai 4.03 UAB Spaudos kontūrai 1. Reikalavimų paskirtis Bendras mūsų tikslas laiku gauti gražų ir visų lūkesčius atit

Leidinių medžiagos paruošimas spaudai 4.03 UAB Spaudos kontūrai 1. Reikalavimų paskirtis Bendras mūsų tikslas laiku gauti gražų ir visų lūkesčius atit 1. Reikalavimų paskirtis Bendras mūsų tikslas laiku gauti gražų ir visų lūkesčius atitinkantį leidinį. Šių techninių reikalavimų paskirtis palengvinti spaudai skirtų failų galutinės gamybos etapą ir paaiškinti

Detaliau

investavimo strategijos Akcijos su saugumo pagalve Struktūrizuotos investicijos: didžiausia rizika - nieko neuždirbti Justinas Gapšys Pastaroji krizė

investavimo strategijos Akcijos su saugumo pagalve Struktūrizuotos investicijos: didžiausia rizika - nieko neuždirbti Justinas Gapšys Pastaroji krizė Akcijos su saugumo pagalve Struktūrizuotos investicijos: didžiausia rizika - nieko neuždirbti Justinas Gapšys Pastaroji krizė nepatyrusius investuotojus privertė iš naujo įvertinti rizikos valdymo svarbą

Detaliau

Projektas

Projektas BALTOSIOS VOKĖS ŠILO GIMNAZIJA VEIKLOS PROGRAMA 2015 2016 m. m. SITUACIJOS ANALIZĖ 2014-2015 m.m. tikslai: 1. Aktualizuoti ugdymo(si) turinį bei formas atsižvelgiant į visuomenės kaitą, vietos bendruomenės

Detaliau

LIETUVOS DARBO BIRŽA PRIE SOCIALINĖS APSAUGOS IR DARBO MINISTERIJOS Socialinės apsaugos ir darbo ministerijos antikorupcinės programos ir jos priemoni

LIETUVOS DARBO BIRŽA PRIE SOCIALINĖS APSAUGOS IR DARBO MINISTERIJOS Socialinės apsaugos ir darbo ministerijos antikorupcinės programos ir jos priemoni LIETUVOS DARBO BIRŽA PRIE SOCIALINĖS APSAUGOS IR DARBO MINISTERIJOS Socialinės apsaugos ir darbo ministerijos antikorupcinės programos ir jos priemonių įgyvendinimo priežiūros komisijai MOTYVUOTA IŠVADA

Detaliau

ŠILUTĖS RAJONO SAVIVALDYBĖS KONTROLĖS IR AUDITO TARNYBA AUDITO ATASKAITA DĖL ŠILUTĖS RAJONO SAVIVALDYBĖS ILGALAIKIŲ PASKOLŲ IŠ VALSTYBĖS VARDU PASISKO

ŠILUTĖS RAJONO SAVIVALDYBĖS KONTROLĖS IR AUDITO TARNYBA AUDITO ATASKAITA DĖL ŠILUTĖS RAJONO SAVIVALDYBĖS ILGALAIKIŲ PASKOLŲ IŠ VALSTYBĖS VARDU PASISKO ŠILUTĖS RAJONO SAVIVALDYBĖS KONTROLĖS IR AUDITO TARNYBA AUDITO ATASKAITA DĖL ŠILUTĖS RAJONO SAVIVALDYBĖS ILGALAIKIŲ PASKOLŲ IŠ VALSTYBĖS VARDU PASISKOLINTŲ LĖŠŲ ĖMIMO INVESTICIJŲ PROJEKTAMS FINANSUOTI

Detaliau