Lošimų teorija. 1 Lošimo teorijos komandų kodai

Panašūs dokumentai
Printing triistr.wxmx

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm

Printing AtvirkstineMatrica.wxmx

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun

Microsoft Word - 15_paskaita.doc

Algoritmø analizës specialieji skyriai

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul

DB sukūrimas ir užpildymas duomenimis

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS

lec10.dvi

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d

(Microsoft Word - Pasiruo\360imas EE 10 KD-1)

QR algoritmas paskaita

Slide 1

Slide 1

Neiškiliojo optimizavimo algoritmas su nauju bikriteriniu potencialiųjų simpleksų išrinkimu naudojant Lipšico konstantos įvertį

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta

MatricosDetermTiesLS.dvi

Masyvas su C++ Užduotys. Išsiaiškinkite kodą (jei reikia pataisykite) ir paleiskite per programą. Ciklo skaitliuko įrašymas į vienmatį masyvą: #includ

ISSN PROBLEMOS Lošimų teorija: konfliktas ir bendradarbiavimas Goda Izabelė Venslauskaitė Vilniaus universitetas, Filosofijos kat

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf

Dažniausios IT VBE klaidos

PowerPoint Presentation

VILNIAUS KOLEGIJA AGROTECHNOLOGIJ FAKULTETAS CHEMIJOS KATEDRA Tyrimas: STUDENTAI APIE KURSINĮ DARBĄ Dalykas: LABORATORIJ VEIKLA Tyrimą atliko lektorė:

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak

D1991 Green Energy/IT

P. Kasparaitis. Praktinė informatika. Skriptų vykdymas ir duomenų valdymas Skriptų vykdymas ir duomenų valdymas Įvadas Skripto failas tai M

Hexagonal Architecture with Ruby on Rails - Šiašiakampe architektura su Ruby on Rails

PS Testavimo ir konfigūravimo valdymas Užduotis nr. 1. Karolis Brazauskas Mindaugas Rekevičius Jonas Riliškis Eugenijus Sabaliauskas

Slide 1

Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų

MUITINĖS DEPARTAMENTAS PRIE LIETUVOS RESPUBLIKOS FINANSŲ MINISTERIJOS BENDRO NAUDOTOJŲ VALDYMO SISTEMOS, ATITINKANČIOS EUROPOS KOMISIJOS REIKALAVIMUS,

EUROPOS KOMISIJA Briuselis, COM(2015) 563 final KOMISIJOS ATASKAITA EUROPOS PARLAMENTUI IR TARYBAI 2013 m. valstybių narių pastangos pasiek

IKT varžybos Pakeliaukime po informacijos pasaulį Varžybų vykdymo eiga 1. Komandų prisistatymas Susipažinkime užduotis (1 priedas) Mokinukui per

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa

Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui

Hands-on exercise

Pardavimų aplikacija (Microsoft Dynamics AX (Axapta) sistemai) Diegimo instrukcija bifree.lt qlik.com

LIETUVOS RESPUBLIKOS AZARTINIŲ LOŠIMŲ ĮSTATYMO NR. IX-325 2, 10, 15, 16, 29 STRAIPSNIŲ PAKEITIMO IR ĮSTATYMO PAPILDYMO 15 1, 16 1 STRAIPSNIAIS ĮSTATYM

Microsoft Word - Kontrabandos tyrimo apzvalga 2010+gk.doc

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s},

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at

Slide 1

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat

LT PRIEDAS Teikiant duomenis EURES veiklos vertinimo sistemai naudotinų rodiklių sąrašas Elektroninė šio sąrašo versija ir, jei jis bus iš dalies keič

LIETUVOS KARTINGO FEDERACIJA LIETUVOS KARTINGO ČEMPIONATAS 4.4 OPEN 125 SENIOR 5 etapas, Aukštadvaris, 17/08/2014

Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis Sumos skaičiavimo algoritmas Sveikieji skaičiai int Suma (int X[], i

MHAIA Estimation of Production rd Stage

SKLYPAS Vilniaus m. sav., Užupis, Darbo g. Antanas Kudarauskas tel

VALSTYBINIO SOCIALINIO DRAUDIMO FONDO VALDYBOS

G TECTA 4G Keleto dujų nustatymo prietaisas LT Trumpas pradžios vadovas

Programų sistemų inžinerija Saulius Ragaišis, VU MIF

LT _0704 UG Beo5.indd

CompoundJS Node on rails

Logines funkcijos termu generavimo algoritmas pagristas funkciniu modeliu

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali

Microsoft PowerPoint Dvi svarbios ribos [Read-Only]

Vilniaus Universiteto Žygeivių Klubas

STUDIJŲ DALYKO (MODULIO) APRAŠAS Dalyko (modulio) pavadinimas KRIMINOLOGIJOS TEORIJOS Kodas Dėstytojas (-ai) Koordinuojantis: prof. dr. Aleksandras Do

Lietuvos korupcijos žemėlapis m. GYVENTOJŲ IR VERSLO ATSTOVŲ KORUPCIJOS VERTINIMŲ IR PATIRTIES TYRIMAI

LR Seimo narių elgsenos tyrimas, naudojant klasterinę analizę ir daugiamačių skalių metodą Vytautas Mickevičius Vytauto Didžiojo universitetas, Inform

2015 lapkričio naujienos Vytos poros bei šviesolaidinių tinklų aksesuarai ir komponentai, įrankiai, komutacinių spintų priedai

Pridėtinės vertės mokesčio sąskaitų faktūrų registrų duomenų tvarkymo ir pateikimo taisyklių priedas I.SAF DUOMENŲ RINKMENOS APRAŠYMAS I DALIS ANTRAŠT

MODENA MODENA midi MODENA mini Techninės charakteristikos ir instrukcijos 2018

Microsoft Word - Naudotojo gidas_aplikacijai_

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo

Lietuvoje aktyviai siekiama įgyvendinti energijos beveik nevartojančių pastatų idėją, todėl tokie būstai kaimynystėje anksčiau ar vėliau taps kasdieny

PS_riba_tolydumas.dvi

Documents\A4\MergePoints.PMT

KARJEROS KOMPETENCIJOS UGDYMO ŽINIŲ VISUOMENĖJE PRIORITETAI

airbnb-pwc-taxguide-lithuania-lt

Microsoft Word - Deposits and withdrawals policy 400.doc

CarSense 303 M A G N E T I N Ė K I L P A N A U D O J I M O I N S T R U K C I J A

ktu kompiuterių katedra Programavimas asembleriu Darius Birvinskas Ignas Martišius Algimantas Venčkauskas

1 Giesmė apie kryžius

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr

1 k. PATALPA Vilniaus m. sav., Senamiestis, Vilniaus g. Domantas Grikšas tel

CIVILINĖS AVIACIJOS ADMINISTRACIJOS DIREKTORIAUS

VILNIAUS UNIVERSITETO STUDENTŲ ATSTOVYBĖ Vilnius University Students Representation PIRMOS PASKAITOS APKLAUSOS APIBENDRINIMAS FAKULTETUOSE 2011m. RUDE

Paciento saugaus kilnojimo standartas I. Bendrosios nuostatos 1. Paciento saugaus kilnojimo standartas (toliau Kilnojimo standartas) parengtas siekian

PowerPoint Presentation

Isvestiniu_taikymai.dvi

VARDAN ŽINIŲ LIETUVOS DELSTI PRAŽŪTINGA: LIETUVOS MOKSLO IR STUDIJŲ BŪKLĖ DABARTINĖS LIETUVOS MOKSLO IR STUDIJŲ BŪKLĖS PAGRINDINĖS YDOS: Lietuvos moks

PowerPoint Presentation

LYGIŲ GALIMYBIŲ KONTROLIERIUS PAŽYMA DĖL KAUNO MIESTO SAVIVALDYBĖS TARYBOS 2016 M. VASARIO 2 D. SPRENDIMU NR. T-20 PATVIRTINTŲ PANEMUNĖS PAPLŪDIMIO PA

BZN Start straipsnis

PowerPoint Presentation

Transkriptas:

games-lt.wxmx / 9 Lošimų teorija A.Domarkas, VU, 4 Atvirojo kodo kompiuterinės algebros sistemoje Maxima 5.. yra sudarytas komandų paketas, kuris sprendžia pagrindinius lošimo teorijos uždavinius. Toliau yra pateikiami komandų kodai ir jų naudojimo pavyzdžiai. Lošimo teorijos komandų kodai Visų komandų kodai yra įrašyti faile gt.mac. Todėl norint jas naudoti užtenka įvykdyti komandą load(gt). Čia pateikiami komandų kodai yra pateikiami skaitytojams, kurie nori susipažinti su jais ir, gal būt, juos patobulinti. Čia yra pirmoji paketo versija. Pavdinkime ją: gt 4.. (Game theory 4 ). Komandos maximize_mlp ir minimize_mlp yra simplex paketo komandų maximize_lp ir minimize_lp apibendrinimas atvejui, kai ekstremumo taškų aibė yra begalinė. Tada šie taškai sudaro iškilą uždarą aibę. Randami sprendinių aibės visi kraštutiniai taškai ir atsakymai yra išvedami tų taškų iškilojo apvalkalo pavidalu. Standatinės simplex paketo komandos maximize_lp ir minimize_lp randa tik po vieną, nežinia kurį, sprendinį. (%i) maximize_mlp(f,apr):=block([m,v,n,f], solving(sis):=block([], if length(sis)=length(listofvars(sis)) then solve(sis) else solve(sis,listofvars(sis)) ), m:length(apr), v:sort(listofvars(apr)), n:length(v), if constantp(f) then n:n+, linsolvewarn:false, f:maximize_lp(f,apr)[], makelist(lhs(apr[k])=rhs(apr[k]),k,,m), powerset(setify(%%),n-), full_listify(%%), makelist(append(%%[k],[f=f]),k,,length(%%)), map(solving,%%), delete([],%%), map(first,%%), sublist(%%,lambda([x],sort(listofvars(x))=v )), sublist(%%,lambda([x],apply("and",subst(x,apr)))), map(sort,%%), listify(setify(%%)), append([f],%%) )$ (%i) minimize_mlp(f,apr):=block([m,v,n,f], solving(sis):=block([], if length(sis)=length(listofvars(sis)) then solve(sis) else solve(sis,listofvars(sis)) ), m:length(apr), v:sort(listofvars([f,apr])), n:length(v), if constantp(f) then n:n+, linsolvewarn:false, f:minimize_lp(f,apr)[], makelist(lhs(apr[k])=rhs(apr[k]),k,,m), powerset(setify(%%),n-), full_listify(%%), makelist(append(%%[k],[f=f]),k,,length(%%)), map(solving,%%), delete([],%%), map(first,%%), sublist(%%,lambda([x],sort(listofvars(x))=v )), sublist(%%,lambda([x],apply("and",subst(x,apr)))), map(sort,%%), listify(setify(%%)), append([f],%%) )$

games-lt.wxmx / 9 Komandos vlow ir vupp apskaičiuoja viršutinį ir apatinį lošimo rėžį (lower and upper values of the game). [], 5-8; [], 4-6 (%i) vlow(a):=block([rows,cols], [rows,cols]:matrix_size(a), lmax(makelist(lmin(a[i]),i,,rows)))$ (%i4) vupp(a):=block([rows,cols], [rows,cols]:matrix_size(a), lmin(makelist(lmax(transpose(a)[j]),j,,cols)))$ Komanda solvemgame(a) sprendžia dviejų asmenų nulinės sumos matricinį lošimą. Komanda msolvemgame(a) sprendžia dviejų asmenų nulinės sumos matricinį lošimą ir yra skirta atvejui, kai strategijų aibės yra begalinės. Sprendiniai išvedami kraštutinių taškų iškilojo darinio pavidalu. Antroji komanda veikia lėčiau negu pirmoji. [], 6-49; [], ch.,. (%i5) solvemgame(a):= block([b,u,w,u,w,f,f,apr,apr,s,s,ss,d,xs,ys,nonegative_lp:true], load(simplex), B:A-lmin(list_matrix_entries(A))+, [m,n]:matrix_size(a), U:makelist(concat(u,k),k,,m), W:makelist(concat(w,k),k,,n), apr:makelist((transpose(b).u)[k][]>=,k,,n), f:sum(u[k],k,,m), minimize_lp(f,apr), s:subst(%%[],u), f:sum(w[k],k,,n), apr:makelist((b.w)[k][]<=,k,,m), ss:maximize_lp(f,apr), s:subst(%%[],w), d:ss[], xs:s/d, ys:s/d, [xs,ys,xs.a.ys] )$ (%i6) msolvemgame(a):=block([sol,solx,soly], linsolvewarn:false, sol:solvebmgame(a,-a), makelist(sol[k][],k,,length(sol)), listify(setify(%%)), sublist(%%,lambda([x],listofvars(x)=[])), if length(%%)>= then solx:convexhull(%%) else solx:%%[], makelist(sol[k][],k,,length(sol)), sublist(%%,lambda([x],listofvars(x)=[])), listify(setify(%%)), if length(%%)>= then soly:convexhull(%%) else soly:%%[], [solx,soly,last(sol)[]] )$ Komanda solvebmgame(a,b) sprendžia dviejų asmenų nenulinės sumos matricinį lošimą(bimatricinį lošimą). [], 5-64; [], ch..

games-lt.wxmx / 9 (%i7) solvebmgame(a,b):=block([m,n,x,y,f,m,n,v,p,q,pm,pn,s,sis,sol,i,j,k], [m,n]:matrix_size(a), X:makelist(concat(x,k),k,,m), Y:makelist(concat(y,k),k,,n), F:X.(A+B).Y-p-q, apr:append( makelist(a[k].y<=p,k,,m), makelist(transpose(b)[k].x<=q,k,,n), [sum(x[k],k,,m)=,sum(y[k],k,,n)=], makelist(x[k]>=,k,,m), makelist(y[k]>=,k,,n)), M:makelist(k,k,,m), pm:listify(powerset(setify(m))), N:makelist(k,k,,n), pn:listify(powerset(setify(n))), v:listofvars(apr), S:[], for i thru ^m do for j thru ^n do ( sis:append( makelist(a[k].y=p,k,sublist(m,lambda([k],not member(k,pm[i])))), makelist(transpose(b)[k].x=q,k, sublist(n,lambda([k],not member(k,pn[j])))), [sum(x[k],k,,m)=,sum(y[k],k,,n)=,f=], makelist(x[k]=,k,listify(pm[i])), makelist(y[k]=,k,listify(pn[j]))), sol:solve(sis,v), ev(apr,%%), map(is,%%), if freeof(false,%%) then S:endcons(ev([X,Y,p,q],sol),S) ), sublist(s,lambda([x],listofvars(x)=[])) )$ Komanda normalize(g) normuoja koalicinį lošimą G. [], 69-7; [], 95-97. (%i8) normalize(g):=block([n,foo,m,v,c,val], n:cardinality(g[]), foo(x,y):=cardinality(x)<=cardinality(y), listify(powerset(g[])), delete({},%%), M:sort(%%,foo), map(v,m), val:subst(g[],%%), c:/(val[^n-]-sum(val[i],i,,n)), [G[],makelist(v(M[k])=c*val[k] -apply("+",create_list(c*val[i],i,listify(m[k]))),k,,^n-)] )$ Komanda e(k,x) randa dalybų x ekscesą koalicijos K atžvilgiu. [], p. 99; [], p. 98. (%i9) e(k,x):=block([], L:listify(K), create_list(x[i],i,l), v(k)-sum(%%[i],i,,length(l)), subst(g[],%%) )$ Komanda core randa lošimo šerdį. Komanda least_core randa epsilon ir epsilon-šerdį. Čia epsilon yra mažiausias skaičius, su kuriuo lošimo epsilon-šerdis yra netuščia aibė. Jei epsilon>, tai lošimo šerdis yra tuščia. [], 7-8; [], -48.

games-lt.wxmx 4 / 9 (%i) least_core(g):=block([n,foo,m,v,x,apr,s,sol], local(x,v), load(simplex), n:cardinality(g[]), foo(x,y):=cardinality(x)<=cardinality(y), listify(powerset(g[])), delete({},%%), M:sort(%%,foo), map(v,m), val:subst(g[],%%), X:makelist(x[k],k,,n), makelist(e(m[k],x)<=epsilon,k,,^n-), apr:endcons(sum(x[k],k,,n)=val[^n-],%%), s:minimize_mlp(epsilon,apr), if length(s)= then sol:subst(s[],x) else sol:convexhull(makelist(subst(s[k],x),k,,length(s))), return([s[],sol]) )$ (%i) core(g):=block([n,foo,m,v,x,apr,s,sol], local(x,v), if least_core(g)[]> then return([]), n:cardinality(g[]), foo(x,y):=cardinality(x)<=cardinality(y), listify(powerset(g[])), delete({},%%), M:sort(%%,foo), map(v,m), val:subst(g[],%%), X:makelist(x[k],k,,n), makelist(e(m[k],x)<=,k,,^n-), apr:endcons(sum(x[k],k,,n)=val[^n-],%%), s:minimize_mlp(,apr), if length(s)= then sol:subst(s[],x) else sol:convexhull(makelist(subst(s[k],x),k,,length(s))), return(sol) )$ Komanda ShapleyValue(G) randa koalicinio lošimo Šiaplio vertę. [], 8-98; [], 5-5 (%i) ShapleyValue(G):=block([n,M,S,x,i,k], local(x), n:cardinality(g[]), M:listify(powerset(G[])), for k thru n do (S:sublist(M,lambda([x],member(k,x))), x[k]:sum((v(s[i])-v(setdifference(s[i],{k})))* (cardinality(s[i])-)!*(n-cardinality(s[i]))!/n!,i,,length(s))), subst(g[],makelist(x[k],k,,n)), subst(v({})=,%%) )$ Komanda nucleolus(g) randa koalicinio lošimo nukleolą. [], 99-4; [], 9-5. (%i) nucleolus(g):=block([lc], lc:least_core(g), if freeof(convexhull,lc[]) then return(lc[]) else first(lc[]), apply("+",%%)/length(%%) )$ Komanda belong(x,c) patikrina ar taškas x priklauso iškilajam dariniui C.

games-lt.wxmx 5 / 9 (%i4) belong(x,c):=([], load(simplex), sum(t[k]*first(c)[k],k,,length(first(c)))-x, append(makelist(%%[k]=,k,,length(x)), makelist(t[k]>=,k,,length(first(c))), makelist(t[k]<=,k,,length(first(c))), [sum(t[k],k,,length(first(c)))=]), minimize_lp(,%%), is(%%[]=) )$ Komandų vlow, vupp pavyzdžiai. [], Example.7 (%i5) A:matrix([,,-,,,-], [-,,-,-,,-], [-,-,-,,, ]); (%o5) (%i6) vlow(a); (%o6) (%i7) vupp(a); (%o7). [], Example.8 (%i8) A:matrix([.,.5,.], [.6,.,.8], [.8,.,.]);..5. (%o8).6.8...8. (%i9) vlow(a); (%o9).8 (%i) vupp(a); (%o).. [], 5 psl., 5. c) pavyzdys (%i) A:matrix( [,-,,-,4], [4,,-,7,], [7,5,4,8,5], [-6,-4,,-,9]); - 4 (%o) 4 7 5 4 7 8 5-6 - 4-9 (%i) vlow(a); (%o) 4 (%i) vupp(a); (%o) 4

games-lt.wxmx 6 / 9 Komandų solvemgame, msolvemgame pavyzdžiai. [], Example. (%i4) A:matrix([,-],[-,9]); (%o4) 9 (%i5) vlow(a); (%o5) (%i6) vupp(a); (%o6) (%i7) solvemgame(a); (%o7) [[ 5 7, 7 ],[5 7, 7 ], 7 ]. [], Example. (%i8) A:matrix([,-,],[-,, -],[,-,]); (%o8) (%i9) vlow(a); (%o9) (%i) vupp(a); (%o) (%i) solvemgame(a); (%o) [[,, ],[,, ],] Sprendiniai iš [], Example. yra X* = (/, /, ) ir Y* = (/, /, ) arba X* = (x, /, / - x), <=x<=/, Y* = (y, /, / - y), <=y<=/. Sprendiniai gauti su game solver iš [4] yra EE P: () / / EP= P: () / / EP= EE P: () / / EP= P: () / / EP=. Minėti sprendiniai yra teisingi, nes jie priklauso bendrąjam sprendiniui, gaunamam su msolvemgame: (%i) msolvemgame(a); (%o) [convexhull Ñ Ñ [[,, ],[,,]],convexhull [[,, ],[,,]],] Komanda msolvemgame yra nauja, nes jos nebuvo anksčiau nei vienoje kompiuterinėje sistemoje.. [], Example. (%i) A:matrix([,,],[,, ],[,,]); (%o) (%i4) vlow(a); (%o4)

games-lt.wxmx 7 / 9 (%i5) vupp(a); (%o5) (%i6) solvemgame(a); (%o6) [[,, ],[,, ],] (%i7) msolvemgame(a); (%o7) [[,, ],[,, ],] 4. [], Example. (%i8) A:matrix([-,,-],[,, ],[,,]); (%o8) - (%i9) vlow(a); (%o9) (%i4) vupp(a); (%o4) (%i4) solvemgame(a); (%o4) [[,,],[ 4, 4,],] (%i4) msolvemgame(a); Ñ (%o4) [[,,],convexhull [[,,],[,, ],[ 4, 4,],[,,]],] (%i4) load(draw)$ Loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/grcommon.o Finished loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/grcommon.o Loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/gnuplot.o Finished loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/gnuplot.o Loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/vtk.o Finished loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/vtk.o Loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/picture.o Finished loading C:/Users/Aleksas/maxima/binary/binary-gcl/share/draw/picture.o

games-lt.wxmx 8 / 9 (%i44) wxdrawd( xlabel = "x", ylabel = "x", xtics =., ytics =., ztics =.5, points_joined=true, point_type = filled_circle, view = [5, 5], points([[,,],[,/,/],[/4,/4,],[/,/,],[,,]]) )$ (%t44) Ar Y = (.5,.5,.5) yra optimali strategija II lošėjui? (%i45) reset()$ (%i) eq:t*[,,]+t*[,/,/]+t*[/4,/4,]+t4*[/,/,]=[.5,.5,.5]; (%o) [ t4 + t 4, t4 + t 4 + t, t +t ] =[.5,.5,.5] (%i) solve(lhs(%)-rhs(%),[t,t,t,t4]); rat: replaced -.5 by -/ = -.5 rat: replaced -.5 by -/ = -.5 rat: replaced -.5 by -7/ = -.5 %r - 4 %r 4 %r - (%o) [[t=-, t =%r, t =-,t4= ]] 6 5 (%i4) subst(%r=/4,%); (%o4) [[t= 4 5,t = 4, t = 5, t4 = 7 ]] (%i5) 4/5*[,,]+/4*[,/,/]+/5*[/4,/4,]+7/*[/,/,]; (%o5) [,, 7 ] (%i6) float(%), numer; (%o6) [.5,.5,.5] Todėl [.5,.5,.5] priklauso iškilajam dariniui convexhull([[,,], [,/,/], [/4,/4,], [/,/,]]) ir yra yra optimali strategija II lošėjui. Kitas būdas tai nustatyti yra pasinaudojant komanda belong: (%i7) belong([.5,.5,.5],convexhull([[,,], [,/,/], [/4,/4,], [/,/,]])); (%o7) true 5. [], Example.6

games-lt.wxmx 9 / 9 (%i8) A:matrix([,-,],[,5, -]); (%o8) 5 - (%i9) vlow(a); (%o9) - (%i) vupp(a); (%o) (%i) solvemgame(a); (%o) [[, ],[,, ],] (%i) msolvemgame(a); (%o) [[, ],[,, ],] 6. [], Example.7 (%i) A:matrix([-,],[,-4],[-5,6],[7,-8]); (%o) - 5 7-4 6-8 (%i4) vlow(a); (%o4) (%i5) vupp(a); (%o5) 6 (%i6) solvemgame(a); (%o6) [[ 5 6,,, 6 ],[5 9, 4 9 ], ] 7. [], Problem.5 (%i7) A:matrix([-,,5,-], [,-4,,-6], [-5,,,-], [-,-,,]); - 5 - (%o7) - 5-4 - 6 - (%i8) vlow(a); (%o8) - (%i9) vupp(a); (%o9) (%i) solvemgame(a); (%o) [[, 5,, 5 ],[5 99, 8,, 99 ],- 6 ] 8. [], Example.

games-lt.wxmx / 9 (%i) A:matrix([,8,-5], [4,4,6], [5,5,5]); 8-5 (%o) 4 5 4 5 6 5 (%i) vlow(a); (%o) 5 (%i) vupp(a); (%o) 6 (%i4) solvemgame(a); (%o4) [[,,],[ 7,, 7 7 ],5] (%i5) msolvemgame(a); (%o5) [[,,],convexhull Ñ [[,, ],[,, ],[,, ],[ 7,, 7 ]],5] 7 Ar Y = [/, /, /] yra optimali strategija II lošėjui? (%i6) C:%[]; (%o6) convexhull (%i7) belong([/,/,/],c); (%o7) true Ñ [[,, ],[,, ],[,, ],[ 7,, 7 7 ]] Todėl [/, /, /] priklauso convexhull([[,/,/],[,/,/],[/,,/],[/7,,7/7]]) ir yra optimali strategija II lošėjui. (%i8) belong([/,,/],c); (%o8) false Todėl [/,,/] nėrat optimal strategija II lošėjui. 9. [], Example.8 (%i9) A:matrix([,-.,-.6],[.,,-.],[.6,.,]); (%o9)..6 -.. -.6 -. (%i) solvemgame(a); (%o) [[,,.],[,,.],.] (%i) A:matrix([,-.,],[.,,-.],[-,.,]); (%o). -. -..

games-lt.wxmx / 9 (%i) A:rat(A); rat: replaced -. by -/5 = -. rat: replaced. by /5 =. rat: replaced -. by -/5 = -. rat: replaced. by /5 =. - 5 (%o)/r/ 5 5 5 (%i) fpprintprec:4; (%o) 4 (%i4) solvemgame(a); (%o4)/r/ [[ 5, 5, ],[ 5, 5, ],] (%i5) float(%), numer; (%o5) [[.5,.76,.9 ],[.5,.76,.9],.]. [], Example.9 (%i6) A:matrix([-,,],[,-,-],[,,-]); (%o6) - - - (%i7) solvemgame(a); (%o7) [[ 5, 5, 5 ],[ 5, 7, 6 ],- 5 5 ]. [], Example. Colonel Blotto Games. (%i8) A:matrix([4,,,],[,4,,],[,-,,],[-,,,],[-,-,,]); (%o8) 4 4 - - (%i9) solvemgame(a); (%o9) [[ 4 9, 4 9,,, 9 ],[ 7 9,, 6 45, 8 5 ],4 9 ] (%i4) msolvemgame(a); Ñ (%o4) [[ 4 9, 4 9,,, 9 ],convexhull [[, 7 9, 8 5, 6 45 ],[ 7 9,, 6 45, 8 5 ]],4 9 ] (%i4) C:%[]; (%o4) convexhull Ñ [[, 7 9, 8 5, 6 45 ],[ 7 9,, 6 45, 8 5 ]] (%i4) belong([/5,/45,/5,/45],c); (%o4) true (%i4) belong([/8,/8,8/8,8/8],c); (%o4) true

games-lt.wxmx / 9 4 Komandos solvebmgame pavyzdžiai Komanda solvebmgame(a,b) sprendžia dviejų asmenų nenulinės sumos matricinį lošimą(bimatricinį lošimą). [], 5-64; [], ch.. Pavyzdžiai iš []: Example. (%i44) A:matrix([,],[,4]); (%o44) 4 (%i45) B:matrix([,],[,-]); (%o45) (%i46) solvebmgame(a,b); (%o46) [[[,],[,],,]] Prisoner s Dilemma, p. 8 (%i47) A:matrix([-5,],[-,-]); (%o47) - 5 - (%i48) B:matrix([-5,-],[,-]); (%o48) - 5 - (%i49) solvebmgame(a,b); (%o49) [[[,],[,],- 5,- 5]] Example. (%i5) A:matrix([,,],[,,],[,,5]); (%o5) 5 (%i5) B:matrix([,,],[,,],[,4,]); (%o5) 4 (%i5) solvebmgame(a,b); (%o5) [[[,,],[,,],,4]] Example. (%i5) A:matrix([,],[,4]); (%o5) 4

games-lt.wxmx / 9 (%i54) B:matrix([,],[,4]); (%o54) 4 (%i55) solvebmgame(a,b); (%o55) [[[, ],[, ],5, 5 ],[[,],[,],4,4],[[,],[,],,]] Example.4 The Arms Race. (%i56) A:matrix([,],[-5,]); (%o56) - 5 (%i57) B:matrix([,-5],[,]); (%o57) - 5 (%i58) solvebmgame(a,b); (%o58) [[[,],[,],,]] Example.5 (%i59) A:matrix([,],[,]); (%o59) (%i6) B:matrix([,],[,]); (%o6) (%i6) solvebmgame(a,b); (%o6) [[[ 4, 4 ],[, ],, 4 ]] (%i6) solvebmgame(a,transpose(b)); (%o6) [[[ 4, 4 ],[, ],, 4 ]] (%i6) solvebmgame(transpose(a),transpose(b)); (%o6) [[[ 4, 4 ],[ 4, 4 ],, 4 ]] Example.9 (%i64) A:matrix([,-],[-,]); (%o64) (%i65) B:matrix([,-],[-,]); (%o65) (%i66) solvebmgame(a,b); (%o66) [[[ 5, 5 ],[ 5, 5 ], 5, 5 ],[[,],[,],,],[[,],[,],,]] method

games-lt.wxmx 4 / 9 (%i67) X:[x,-x]; (%o67) [ x,-x] (%i68) Y:[y,-y]; (%o68) [ y,-y] (%i69) E:X.A.Y; (%o69) x ( y- ) +( -x)( - y) (%i7) E:X.B.Y; (%o7) x ( y- ) +( -x)( ( -y)-y) (%i7) eq:diff(e,x)=; (%o7) 5 y-= (%i7) eq:diff(e,y)=; (%o7) x- ( -x ) = (%i7) solve([eq,eq]); (%o7) [[x= 5, y = 5 ]] (%i74) sol:subst(%[],[x,y,e,e]); (%o74) [[ 5, 5 ],[ 5, 5 ], 5, 5 ] Example. (%i75) A:matrix([,],[,]); (%o75) (%i76) B:matrix([,],[,]); (%o76) (%i77) solvebmgame(a,b); (%o77) [[[, ],[, ],, ],[[,],[,],,],[[,],[,],,]] Example. (%i78) A:matrix([-,5,],[-,,],[,,]); - (%o78) - 5 (%i79) B:matrix([-4,-,4],[-,,4],[,,-]); - 4 (%o79) - - 4 4 (%i8) solvebmgame(a,b); (%o8) [[[ 4, 7, 9 4 ],[ 4, 5 4, 4 7 ], 4, 4 ],[[, 5, 5 ],[,,],,],[[,,],[,,],, ],[[,,],[,,],,4]] Example.

games-lt.wxmx 5 / 9 (%i8) A:matrix([,,4],[,4,]); (%o8) 4 4 (%i8) B:matrix([,,-],[,,]); (%o8) (%i8) solvebmgame(a,b); (%o8) [[[, ],[,,],8, ]] p. 5 (%i84) A:matrix([-,,],[,,],[,,]); (%o84) (%i85) B:matrix([,,],[,-,],[,,]); (%o85) (%i86) solvebmgame(a,b); (%o86) [[[,, ],[,, ],, ],[[,,],[,,],,],[[,,],[,,],,]] Example. (%i87) A:matrix([,],[,]); (%o87) (%i88) B:matrix([,],[,]); (%o88) (%i89) solvebmgame(a,b); (%o89) [[[,],[,],,]] (%i9) A:matrix([,-],[,]); (%o9) (%i9) B:matrix([,-],[-,]); (%o9) - (%i9) solvebmgame(a,b); (%o9) [[[ 4, 4 ],[,],,],[[,],[,],,],[[,],[,],,]] Example.4 A Discrete Silent Duel. (%i9) ratprint:false$ linsolvewarn:false$

games-lt.wxmx 6 / 9 (%i95) A:matrix( [.,-.4,-.7,-.], [.9,-.4,-.6,-.6], [.76,-.,-.,-.8], [.6,-.,-.6,-]);. -.4 -.7. (%o95).9.76 -.4 -..6..6.8.6 -. -.6 - (%i96) A:ratsimp(A); 6 5-6 5 8 5-6 5 (%o96) 5 9 5-5 - 5-4 5-6 5-8 5-9 5 5 5-5 - (%i97) B:matrix( [.64,.6,.6,.6], [.4,.6,-.,-.], [-.8,.6,.4,-.6], [-.6,.,.6,]);.64.6.6.6 (%o97).4 -.8.6.6 -..4 -. -.6 -.6..6 (%i98) B:ratsimp(B); 6 5 5 5 5 (%o98) 5-7 5 4 5 9 5 5 5 5-5 - 5 5 5 (%i99) sol:solvebmgame(a,b); (%o99) [[[,, 5 9, 4 9 ],[,5 7,,],- 7 85, 45 ],[[,,,],[,,,],- 5, 5 ],[[,,,],[,,,],- 5, 9 5 ],[[6 69,, 5 69, 4 ],[ 69 68, 68, 7 6,],- 4 5, 49 845 ],[[,,, ],[ 6,,5 6, ],- 5, 5 ],[[,,,],[,,,],6 5, 6 5 ],[[6 7,, 7,],[ 4,,,], 4 75, 49 45 ]] (%i) sol:float(%)$ (%i) length(sol); (%o) 7 (%i) sol:reverse(sort(sol))$

games-lt.wxmx 7 / 9 (%i) for k thru 7 do print(sol[k]); [[.,.,.,.],[.,.,.,.],.,.64] [[.97,.,.,. ],[.7,.,.8,.],-.4,.6] [[.95,.,.,.4 ],[.78,.79,.,.],-.9,.58] [[.94,.,.59,. ],[.,.79,.,.],.69,.59] [[.,.,.,.],[.,.,.,.],-.,.6] [[.,.,.56,.44 ],[.,.88,.,.],-.5,.9] [[.,.,.,.],[.,.,.,.],-.6,.6] (%o) done Gavome tokius pat rezultatus kaip ir []. Pavyzdys iš [4], http://banach.lse.ac.uk/ Gauname tuos pačius 75 sprendinius, kaip ir [4] (%i4) A:matrix([-8,6,-6,6,-6,9],[-8,7,-,97,-5,7],[,-,4,-,7,-],[-, - 8 6 6 6-6 9 8 7-97 5 7 (%o4) - - 7 4 - - 4 7 - - 7 5 97-7 8 9-6 6 6 6-8 (%i5) B:matrix([7,6,7,-,-6,-5],[-8,-8,-,,9,7],[97,6,4,-,-6,-],[-, 7 6 7 - - 6 5 8-8 - 9 7 (%o5) 97-6 6 4 - - 4 6 6-97 7 9 - - 8 8 5-6 - 7 6 7 (%i6) solvebmgame(a,b)$ (%i7) sol:sort(%)$ (%i8) length(%); (%o8) 75 First solutions is

games-lt.wxmx 8 / 9 (%i9) for k thru do print(sol[k]); [[,,,, 4 5, 5 ],[,,,, 5, 4 5 ],4 5, 4 5 ] [[,,,, 9 7, 5 7 ],[,,, 4 7, 7,],,97 7 ] [[,,,, 7, 5 7 ],[,, 4, 9 4,,],,5 7 ] [[,,,,, 7 ],[,9,,,,],477 6, 45 ] [[,,,,, ],[,,,,,],5, 5 ] [[,,,,,],[,,,,,],7,7] [[,,, 5, 4, 5 ],[,, 5,, 5, 4 ],4, 4 ] [[,, 89, 5, 8, 59 89 ],[, 8, 7 64,, 64, 47 8 ],97 8, 7 ] [[,, 98, 98, 8, 4 ],[ 7 87, 5 87,,,5 87, 5 87 ],75 9, 7 ] [[,, 4 7,,, 7 ],[,,,,5 7, 9 7 ],97 7,] (%o9) done 5 Komandos normalize pavyzdžiai Komanda normalize(g) normuoja koalicinį lošimą G. [], 69-7; [], 95-97.. [], Example 6.4 (%i) G:[{,,}, [v({})=, v({})=/4, v({})=-, v({,})=, v({,})=, v({,})=, v({,,})=4 (%i) normalize(g); (%o) [{,,},[v({}) =,v( {}) =,v( {}) =,v( {,}) = 7 5,v ( ) v( {,,}) =]] {,} = 4 {,} = 7 5, 5,v ( ). (%i) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=5, v({,})=6, v({,})=8, v({,,})=9 (%i) normalize(g); (%o) [{,,},[v({}) =,v( {}) =,v( {}) =,v( {,}) = 5 9,v ({,}) =,v ({,}) = 8 9, v( {,,}) =]] 6 excess e(s,x) examples

games-lt.wxmx 9 / 9 Komanda e(k,x) randa dalybų x ekscesą koalicijos K atžvilgiu. [], p. 99; [], p. 98. [], Example 6.5 (%i4) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=4, v({,})=5, v({,})=6, v({,,})=8 (%i5) e({},x); (%o5) -x (%i6) e({},x); (%o6) -x (%i7) e({},x); (%o7) -x (%i8) e({,},x); (%o8) -x -x +4 (%i9) e({,},x); (%o9) -x -x +5 (%i) e({,},x); (%o) -x -x +6 (%i) e({,,},x); (%o) -x -x -x +8 7 Komandos core and least_core pavyzdžiai Komanda core randa lošimo šerdį. Komanda least_core randa epsilon ir epsilon-šerdį. Čia epsilon yra mažiausias skaičius, su kuriuo lošimo epsilon-šerdis yra netuščia aibė. Jei epsilon>, tai lošimo šerdis yra tuščia. [], 7-8; [], -48.. [], Example 6.5 (%i) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=4, v({,})=5, v({,})=6, v({,,})=8 (%i) core(g); (%o) convexhull( [[,,4],[,,4],[,,]]) (%i4) load(draw)$

games-lt.wxmx / 9 (%i5) wxdrawd( xlabel = "x", ylabel = "x", xtics =, ytics =, ztics =, view = [5, 6], line_width =, triangle ([,,4],[,,4],[,,]) ); (%t5) (%o5) (%i6) least_core(g); (%o6) [,[5, 8, ]]. [], Example 6.6 (%i7) G:[{,,}, [v({})=, v({})=/4, v({})=-, v({,})=, v({,})=, v({,})=, v({,,})=4 (%i8) G:normalize(G); (%o8) [{,,},[v({}) =,v( {}) =,v( {}) =,v( {,}) = 7 5,v ( ) v( {,,}) =]] (%i9) core(g); (%o9) convexhull (%i) load(draw)$ {,} = 4 {,} = 7 5, 5,v ( ) Ñ [[, 7 5, 8 5 ],[, 5, 4 5 ],[ 4 5, 5,],[ 7 5,, 8 5 ],[ 8 5,, 7 5 ],[ 8 5, 7 5,]]

games-lt.wxmx / 9 (%i) wxdrawd( xlabel = "x", ylabel = "x", xtics =., ytics =., ztics =., points_joined=true, point_type = filled_circle, view = [5, 6], points([[,/5,4/5],[,7/5,8/5],[7/5,,8/5], [8/5,,7/5],[8/5,7/5,],[4/5,/5,],[,/5,4/5]])); (%t) (%o) (%i) least_core(g); (%o) [ - 4 5,[ 4 5, 7 5, 4 5 ]] (%i) least_core(g); (%o) [,[,,]]. [], Example 6.7 (%i4) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=, v({,})=, v({,})=, v({,,})= (%i5) core(g); (%o5) [] Todėl lošimo šerdis yra tuščia. (%i6) least_core(g); (%o6) [,[,, ]] 4. ([], Example 6.8) (%i7) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=5, v({,})=, v({,})=5, v({,,})=5

games-lt.wxmx / 9 (%i8) core(g); (%o8) [] Todėl lošimo šerdis yra tuščia. (%i9) least_core(g); (%o9) [,[5,5,65]] 5. [], 5-7 Palyginkite su ten vykdomais Maple skaičiavimais. (%i4) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=, v({,})=, v({,})=, v({,,})=5/ (%i4) core(g); (%o4) convexhull Ñ [[,, ],[,5,],[,, ],[,,]] (%i4) least_core(g); Ñ (%o4) [ 4,convexhull [[ 4,, 4 ],[5 4,, 4 ]] ] (%i4) t*[/4,,/4]+(-t)*[5/4,,/4],expand; (%o4) [ 5 4 -t, t +, 4 ] Todėl mažiausia šerdis yra atkarpa: aibė taškų [5/4-t, t+, /4], <=t<=. 6. [], Example 6.. Empty Core. (%i44) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=5, v({,})=6, v({,})=8, v({,,})=9 (%i45) normalize(g); (%o45) [{,,},[v({}) =,v( {}) =,v( {}) =,v( {,}) = 5 9,v ({,}) =,v ({,}) = 8 9, v( {,,}) =]] (%i46) ev(v({,})+v({,})+v({,}),%[]); (%o46) 9 9 (%i47) is(%<=); (%o47) false Pagal teiginį 6..7 iš [] lošimo šerdis yra tuščia. (%i48) core(g); (%o48) []

games-lt.wxmx / 9 (%i49) least_core(g); (%o49) [,[4,, ]]. Nonempty Core. (%i5) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=, v({,})=4, v({,})=, v({,,})=6 (%i5) G:normalize(G); (%o5) [{,,},[v({}) =,v( {}) =,v( {}) =,v( {,}) = 6,v ({,}) =,v ({,}) =, v( {,,}) =]] (%i5) ev(v({,})+v({,})+v({,}),%[]); (%o5) 4 (%i5) is(%<=); (%o5) true Pagal teiginį 6..7 iš [] lošimo šerdis yra netuščia. (%i54) C:core(G); (%o54) convexhull( [[,,5],[,,4],[,,5],[,,],[,,]]) Taškas [.5,,.5] yra apskaičiuotas vadovėlyje []. (%i55) belong([.5,,.5], C); (%o55) true Todėl [.5,,.5] priklauso šerdžiai convexhull([[,,5],[,,4],[,,5],[,,],[,,]]). (%i56) least_core(g); (%o56) [,convexhull( [[,,4],[,,]])] (%i57) nucleolus(g); (%o57) [,,7 ] Todėl [.5,,.5] yra lošimo G nucleolas. 8 Nukleolo skaičiavimo pavyzdžiai. [], Example 6. (%i58) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=, v({,})=, v({,})=, v({,,})=

games-lt.wxmx 4 / 9 (%i59) normalize(g); (%o59) [{,,},[v({}) =,v( {}) =,v( {}) =,v( {,}) = 6,v ({,}) = 6,v ({,}) = 5 6, v( {,,}) =]] (%i6) ev(v({,})+v({,})+v({,}),%[]); (%o6) 7 6 (%i6) is(%<=); (%o6) true Todėl lošimo šerdis yra netuščia. (%i6) core(g); (%o6) convexhull( [[,,],[,,],[,,],[,,]]) (%i6) least_core(g); (%o6) [,convexhull( [[,,9],[,9,]])] (%i64) nucleolus(g); (%o64) [,, ]. ([], Example 6.) (%i65) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=, v({,})=, v({,})=, v({,,})= (%i66) normalize(g); (%o66) [{,,},[v({}) =,v( {}) =,v( {}) =,v( {,}) =,v ({,}) =,v( {,}) =, v( {,,}) =]] (%i67) ev(v({,})+v({,})+v({,}),%[]); (%o67) (%i68) is(%<=); (%o68) true Todėl lošimo šerdis yra netuščia. (%i69) core(g); (%o69) convexhull( [[,,],[,,],[,,],[,,]]) (%i7) least_core(g); (%o7) [ - 5,[5,,5]] (%i7) nucleolus(g); (%o7) [5,,5]. [], example XIII..

games-lt.wxmx 5 / 9 (%i7) G:[{,,,4}, [v({})=, v({})=, v({})=, v({4})=, v({,})=5, v({,})=5, v({,4})=5, v({,})=5, v({,4})=5, v({,4})=5, v({,,})=95, v({,,4})=85, v({,,4})=8, v({,,4})=55, v({,,,4})= (%i7) core(g); (%o7) [] (%i74) least_core(g); (%o74) [, convexhull( [[,,5,5],[5,5,5,5]])] (%i75) nucleolus(g); (%o75) [ 65, 55,5,5] 4. (%i76) G:[{,,}, [v({})=465, v({})=747.5, v({})=58.5, v({,})=6987.5, v({,})=58.5, v({,})=75, v({,,})=9 (%i77) ratprint:false$ (%i78) fpprintprec:8; (%o78) 8 (%i79) nucleolus(g); (%o79) [ 575, 97875, 575 ] 4 4 (%i8) float(%), numer; (%o8) [ 5687.5, 4468.75, 84.75] 5.

games-lt.wxmx 6 / 9 (%i8) G:[{,,,4}, [v({})=, v({})=, v({})=, v({4})=, v({,})=.68, v({,})=.4, v({,4})=.75, v({,})=.6, v({,4})=.5, v({,4})=.7, v({,,})=., v({,,4})=.5, v({,,4})=., v({,,4})=.75, v({,,,4})=.89 (%i8) G:ratsimp(G); (%o8) [{,,,4},[v({}) =,v( {}) =,v( {}) =,v( {4}) =,v( {,}) = 7 5,v ( ) v( {,4}) = 4,v ({,}) = 5,v ({,4}) = 5,v ({,4}) = 7,v ({,,}) =,v ( ) v( {,,4}) = 5 5,v ({,,4}) = 4,v ({,,,4}) = 89 ]] {,} = 6 5, {,,4} = 5, (%i8) least_core(g); (%o8) [ - 9 5,convexhull Ñ [[ 7 5, 69, 9 5, 7 77 ],[ 5, 5, 9 5, 7 5 ],[ 5, 69, 9 5, 9 5 ],[4 5, 5, 9 5, 49 ],[4 5, 57, 9 5, 9 5 ]] ] (%i84) nucleolus(g); (%o84) [ 87 5, 47 5, 9 5, 5 ] 9 Šiaplio vertės skaičiavimo pavyzdžiai Komanda ShapleyValue(G) randa koalicinio lošimo Šiaplio vertę. [], 8-98; [], 5-5 [],. pavyzdys (%i85) G:[{,,},[v({})=,v({})=,v({})=, v({,})=,v({,})=, v({,})=,v({,,})= (%i86) ShapleyValue(G); (%o86) [,, ] [],. pavyzdys (%i87) G:[{,,,4},[v({})=,v({})=,v({})=, v({4})=,v({,})=,v({,})=,v({,4})=, v({,})=, v({,4})=, v({,4})=, v({,,})=, v({,,4})=, v({,,4})=, v({,,4})=, v({,,,4})= (%i88) ShapleyValue(G); (%o88) [, 4, 4, 5 ]

games-lt.wxmx 7 / 9 [],. pavyzdys (%i89) G:[{,,,4},[v({})=,v({})=,v({})=, v({4})=,v({,})=,v({,})=,v({,4})=, v({,})=, v({,4})=, v({,4})=, v({,,})=, v({,,4})=, v({,,4})=, v({,,4})=, v({,,,4})= Toliau pavyzdžiai iš []: Example 6.5 (%i9) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=5, v({,})=, v({,})=5, v({,,})=5 (%i9) fpprintprec:4$ (%i9) ShapleyValue(G); (%o9) [ 85,5,5 ] (%i9) float(%), numer; (%o9) [4.5,5.,57.5] (%i94) nucleolus(g); (%o94) [5,5,65] Example 6.6 (%i95) G:[{,,}, [v({})=5, v({})=4, v({})=, v({,})=9, v({,})=5, v({,})=5, v({,,})= (%i96) fpprintprec:4$ (%i97) ShapleyValue(G); (%o97) [ 5 6, 5 6, ] (%i98) float(%), numer; (%o98) [9.7,54.7,6.667] (%i99) nucleolus(g); (%o99) [4,55,5] Example 6.7

games-lt.wxmx 8 / 9 (%i) G:[{,,}, [v({})=, v({})=, v({})=, v({,})=, v({,})=, v({,})=, v({,,})= (%i) ShapleyValue(G); (%o) [, 6, 6 ] (%i) core(g); (%o) [,,] (%i) least_core(g); (%o) [,[,,]] (%i4) nucleolus(g); (%o4) [,,] Example 6.8 (%i5) G:[{,,,4}, [v({})=, v({})=, v({})=, v({4})=, v({,})=, v({,})=, v({,4})=, v({,})=, v({,4})=, v({,4})=, v({,,})=, v({,,4})=, v({,,4})=, v({,,4})=, v({,,,4})= (%i6) ShapleyValue(G); (%o6) [, 4, 4, 5 ] Example 6. (%i7) G:[{,,,4}, [v({})=, v({})=, v({})=, v({4})=, v({,})=, v({,})=, v({,4})=5, v({,})=, v({,4})=, v({,4})=, v({,,})=, v({,,4})=5, v({,,4})=5, v({,,4})=, v({,,,4})=55

games-lt.wxmx 9 / 9 (%i8) ShapleyValue(G); (%o8) [ 65 6, 4, 5, 45 ] [] A.Apynis, Lošimų teorija, VU, 7. [] E.N.Barron, Game theory. An Introduction, second ed. John Wiley & Sons, Inc.,. [] G.Owen, Game theory, rd ed., Academic Press, 995. [4] Game theory solver, http://banach.lse.ac.uk/