1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra aibė erdvės taškų kurių atstumas nuo taško lygus. Pažymėkime bet kurio tokio taško koordinates. Taigi " $ Arba % '&) +-. &0/ 1 &)3 $. Iš čia gauname sferos lygtį duotoje koordinačių sistemoje 45&0 &)/.6&73 Tarkime kad 3. Tada turime apskritimo lygtį 4'&) &0/ Bendru atveju linijos lygtis plokštumoje užrašoma taip: 89 ;: Pastebėkime kad atvejį 3 reikia skirti nuo atvejo skaičius kai turime cilindro lygtį: 849 <: -9 =?>A@ - bet kuris realusis Erdvės taškų aibės gali būti išreikštos lygtimis ir nelygybėmis 89 = ;: CB 9 = ED : 4=FG Pavyzdžiui rutulio su centru taške ir spinduliu taškai tenkina nelygybę 45&).H&0/ &)3 JI K Pastebėkime dar kad lygtis 89 = &LK 89 <: ekvivalenti nelygybei 849= ED :
1 TIESĖS IR PLOKŠTUMOS 1.1. Algebrinės lygtys ir paviršiai Apibrėžimas Algebrinis paviršius taškų apibrėžtų lygtimi + ;: Skaičius " "%$%$%$ " '& ) vadinamas šios algebrinės lygties eile ir algebrinio paviršiaus laipsniu. Kai į lygtį neįeina kintamasis turime - tosios eilės laipsnio) linija: + - ;:. Teorema eilės invariantiškumas) Jei linija paviršius) kurioje nors Dekarto koordinačių sistemoje aprašoma ) lygtimi tai bet kurioje kitoje Dekarto koordinačių sistemoje ji išreiškiama to pačio pavidalo ir tos pačios eilės lygtimi. Įrodymas. Koordinačių sistemos pakeitimas reiškia naujų koordinačių įvedimą: 0/ 1/ 0/ 1/ Įstačius šiuos reiškinius į ) lygtį gausime to pačio laipsnio polinomą. 1. Parametrinės kreivės ir paviršiaus lygtys Tarkime kad kreivė yra judančio taški trajektorija. Jei kiekvienu laiko momentu yra žinoma taško 49 padėtis tai jo koordinatės yra parametro funkcijos 43 87 5 64 :9 ; >A@ Šios lygtys yra vadinamos kreivės erdvėje parametrinėmis lygtimis. Kai nėra koordinatės turime kreivę plokštumoje. Parametro fizikinė prasmė nėra svarbi. Pavyzdžiai Parametrinės lygtys =<?>A@B @CEDF apibrėžia apskritimą plokštumoje su centru koordinačių pradžioje ir spinduliu.
1 TIESĖS IR PLOKŠTUMOS 3 Tarkime kad turime dar ir tokį kintamąjį : < >A@B =@C D C Tai yra vadinamos sraigtinės kreivės parametrinės lygtys. Ji priklauso spindulio cilindrui. Apibendrinkime parametrines lygtis ir įveskime du parametrus: 43 87 5 64 :9 ; >A@ A@ Šios lygtys vadinamos paviršiaus parametinėmis lygtimis. Kūgio parametrinės lygtys 43 5 64 9 >A@ @
1 TIESĖS IR PLOKŠTUMOS 4 1.3 Tiesiu ir plokštumu lygtys 1.3.1 Pirmosios eilės linijos ir paviršiai : Pirmosios eilės arba tiesine lygtimi vadinama ;: Reikalaujama dar. Kai į lygtį neįeina turime tašką 9 plokštumoje. Teorema. Pirmosios eilės lygtimi išreiškima tam tikra plokštuma tiesė). Bet kurios plokštumos tiesės) taškai yra pirmosios eilės lygties sprendiniai. 1.3. Tiesės parametrinės lygtys Tarkime kad tiesė & eina per tašką lygiagrečiai vektoriui Tada bet kuriam tiesės & 9 taškui turime K K. Arba. >A@
1 TIESĖS IR PLOKŠTUMOS 5. Tada tiesės lygtį pert- Taigi turime tiesės & parametrines lygtis: 43 5&) 5 + 64 H&0 + 6&) >A@ + Tarkime kad nagrinėjama tiesė plokštumoje varkome taip: '&) &) Pažymėję & gauname tiesės lygtį &).H&0 <: arba Tarkime kad ;: & J& ;:. Tada tiesės lygtį galima išspręsti ordinatės atžvilgiu: / & / &
& 1 TIESĖS IR PLOKŠTUMOS 6 Koeficientas D 7 yra vadinamas tiesės krypties koeficientu. Kampas tarp dviejų plokštumoje tiesių / ir / yra 87 & " ir gali būti apskaičiuotas taip: " & D D " & D " D D 7 arba Tiesės yra statmenos kai arba D. Taigi turime :. Tiesės yra lygiagrečios kai ;: t. y. 1.3.3 Plokštumos parametrinės lygtys. Tarkime kad plokštuma eina per tašką lygiagrečiai nekolinieariems vektoriams ir. Tada bet kuriam plokštumos
1 TIESĖS IR PLOKŠTUMOS 7 yra plokštumoje ir gali būti išreikštas nekolin- 49= taškui vektorius ieariais vektoriais : Taigi gauname plokštumos parametrines lygtis: 43 5&) 5 64 H&0 6&) >A@ 1.3.4 Tiesės ir plokštumos vektorinės lygtys Tarkime kad plokštuma eina per taška @4 FG ir yra statmena vektoriui kuris vadinamas plokštumos normaliuoju vektoriumi. Pažymėkime vektorių spindulį @J 4 F. Esant bet kuriam plokštumos taškui @?49 @ vektorius @ yra statmenas plokštumai. Jei @ 49= gauname plokštumos vektorinę lygtį: & ;: Perrašome šią lygtį koordinatėmis: '&. &0F ; &) ;: arba <: & & F & Tarkime į visus reiškinius neįeina koordinatė. Tada turime vektorius plokštumoje ir lygtimi <: išreiškiama tiesė einantį per plokštumos tašką @ statmenai vektoriui H. 1.3.5 Tiesių ir plokštumų statmenumas Dvi plokštumos tiesės) ir yra statmenos kai jų normalieji vektoriai yra statmeni. Kai plokštumos tiesės) ir išreiškiamos lygtimis ;: ;: ir
1 TIESĖS IR PLOKŠTUMOS 8 normalųjų vektorių statmenumo sąlyga: : Plokštumos tiesės) yra lygiagrečios kai jų normalieji vektoriai yra kolinearūs:. Arba lygiagretumo sąlygos koordinatėmis: Pavyzdys Raskime plokštumos einančios per tašką lygiagrečiai plokštumai lygtį. Sprendimas. Plokštumos 6 normalusis vektorius yra : :. Taigi : ir ieškomos plokštumos lygtis yra :. Kai & plokštuma eina per tašką. 1.3.6 Tiesės erdvėje lygtys Tiesė erdvėje gali būti apibrėžta kaip dviejų plokštumų susikirtimas: ;: ;: Tiesė apibrėžta kai šios dvi plokštumos nėra lygiagrečios. Tai reiškia kad rang Ši lygybė galioja tada ir tik tada kai bent vienas iš trijų determinantų nelygus nuliui Tarkime kad į šią sistemą neįeina kintamasis. Tada sistemos sprendinys yra tiesių susikirtimo taškas. Šis taškas yra vienintelis kai pirmasis determinantas nelygus nuliui.
1 TIESĖS IR PLOKŠTUMOS 9 1.4 Tiesiu ir plokštumu pagrindinai uždaviniai 1.4.1 Tiesės einančios per du taškus lygtis Tarkime kad tiesė eina per du erdvės taškus 49= bet kuriam tiesės taškui turime K K. Arba '&7 H& 6&7 & &7 &). Tada 1.4. Plokštumos einančios per tris taškus lygtis 4 Tarkime kad plokštuma eina per tris taškus 4 49 kurie nepriklauso vienai tiesei. Tada esant bet kuriam plokštumos taškui vektoriai ir yra komplanarūs. Taigi :. Arba koordinatėmis: 5& &0 &) 5& &0 &) : 5& &0 &) Pastebėkime kad jei vektoriai tapačiai lygus nuliui. ir yra kolinearūs šis determinantas 1.4.3 Tiesės ir plokštumos lygiagretumo sąlygos Tiesė & yra lygiagreti plokštumai arba yra šioje plokštumoje) ;: kai vektorius yra statmenas plokštumos normaliajam vektoriui. Arba <: Tarkime kad tiesė apibrėžta tiesinėmis lygtimis ;: ;: Tada vektorių galima rasti kaip šių plokštumų normaliųjų vektorių ir vektorinę sandaugą
1 TIESĖS IR PLOKŠTUMOS 10 Todėl tiesės ir plokštumos lygiagretumo sąlygą galima užrašyti taip: <: 1.4.4 Lygtys atkarpomis Plokštumos atkarpomis lygtis / 3 Skaičių / 3 geometrinė prasmė parodyta paveiksle
1 TIESĖS IR PLOKŠTUMOS 11 Tiesės lygtis atkarpomis / 1.4.5 Taško atstumas nuo plokštumos & K K K & K K K Tarkime kad plokštumos lygtis yra G <: 9 = 4 F 4 Raskime taško atstumą nuo šios plokštumos. Plokštuma eina per G tašką ). Gretasienio sudaromo vektoriais tūris lygus. Taško atstumas nuo plokštumos yra šito gretasienio aukštinė. Kadangi turime. Čia gretasienio pagrindo plotas. Taigi
K K 1 TIESĖS IR PLOKŠTUMOS 1 Vektorių vektorinę sandaugą galima pakeisti plokštumos normaliuoju vektoriumi. Tada K & K K K Pažymėję & & F & tai reiškia kad taškas prikauso plokštumai <: & ) gauname & & &. 4 Taigi taško atstumas nuo plokštumos : lygus K 1 1.4.6 Taško atstumas nuo tiesės Plokštumos taško atstumas nuo tiesės K 1 <: lygus 1.4.7 Atstumas tarp nelygiagrečių tiesių erdvėje Tiesių einančių per taškus ir ir lygtys yra & & 9 lygiagrečiai vektoriams >A@ Atstumas tarp šių tiesių K & K K K