Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų

Dydis: px
Rodyti nuo puslapio:

Download "Atranka į 2019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų"

Transkriptas

1 Atranka į 019 m. Pasaulinę ir Vidurio Europos matematikos olimpiadas Sprendimai Artūras Dubickas ir Aivaras Novikas 1. Mykolas sugalvojo natūraliųjų skaičių seką a 1, a, a 3,..., o tada apibrėžė naują seką b 1, b, b 3,... tokiomis lygybėmis: b 1 = a 1, b = a, b n = a n b n 1 + b n visiems n 3. Ar galėjo Mykolas pradinę seką a 1, a, a 3,... parinkti taip, kad kiekvienas iš skaičių b 1, b, b 3,... būtų a) natūraliojo skaičiaus kvadratas? b) natūraliojo skaičiaus kubas? Sprendimas. Nagrinėkime a) P (x) = x ; b) P (x) = x 3. Abiem atvejais įrodysime, kad galima taip parinkti seką a 1, a, a 3,... ir natūraliųjų skaičių seką c 1 < c < c 3 <..., kad visiems n N galiotų b n = P (c n ). Vadinasi, abiem atvejais a) ir b) atsakymas teigiamas. (Pastebėkime, kad analogišką teiginį galima įrodyti ir bet kokiam daugianariui su sveikaisiais koeficientais P (x) = p d x d + + p 0, kur d ir p d N.) Funkcija P (x) x = x(x 1) arba (x 1)x(x + 1) yra neneigiama ir didėjanti, kai x [1, + ). Imkime c 1 = 1, c = ir a 1 = P (c 1 ), a = P (c ). Toliau imkime c n = P (c n 1 ) + c n ir a n = P (c n) P (c n ) P (c n 1 ) visiems n 3. Čia c n > P (c n 1 ) c n 1, kai n 3. Be to, a n N, nes skirtumas P (c n ) P (c n ) N dalijasi iš c n c n = P (c n 1 ) N. Belieka įrodyti, kad b n = P (c n ) visiems n N. Remkimės matematine indukcija. Indukcijos bazė: b n = a n = P (c n ), kai n = 1 ir n =. Indukcijos žingsnis: jei b k = P (c k ), kai k = n 1 ir k = n, tai b n = a n b n 1 + b n = P (c n) P (c n ) P (c n 1 ) + P (c n ) = P (c n ). P (c n 1 ) Atsakymas: a) taip; b) taip.

2 . Trikampio ABC pusiaukampinės kertasi taške I. Taškai M ir N atitinkamai kraštines AB ir AC dalija pusiau. Tiesės MN ir CI kertasi taške P. Pažymėtas toks taškas Q, kad tiesės MN ir P Q yra statmenos, o tiesės BI ir NQ lygiagrečios. Raskite kampą tarp tiesių AC ir IQ. Sprendimas. Tiesių AC ir IQ sankirtą pažymėkime D, o tiesių AI ir NQ sankirtą E (žr. pav.). Kadangi MN BC, tai NCP = BCP = CP N, trikampis CP N lygiašonis ir N P = N C = N A. Todėl P priklauso apskritimui su skersmeniu AC, o AP C = 90. Kadangi MN BC ir BI NQ, tai CBI = P NQ ir AIP = 180 AIC = CAI + ACI = BAC + ACB = 180 ABC = 90 CBI = 90 P NQ = P QN. Statieji trikampiai AIP ir NQP turi po lygų smailųjį kampą, todėl yra panašieji. Tada AIP = N QP ir IAP = QN P, o keturkampiai ANEP ir IQP E yra įbrėžtiniai. Vadinasi, CID = P IQ = P EQ = 180 P EN = P AN = Atsakymas: 90. = CAP = 90 ACP = 90 DCI, CDI = 180 CID DCI = 90. =

3 3. Duoti natūralieji skaičiai m ir n. Į šaškininkų sąskrydį atvyko 1m dalyvių. Jo metu kiekvienas dalyvis sulošė lygiai 3m + 6 šaškių partijas. Bet kurie du dalyviai tarpusavyje lošė daugiausiai vieną kartą. Bet kuriems dviem sąskrydžio dalyviams A ir B egzistuoja lygiai n kitų dalyvių, kurie lošė šaškėmis tiek su A, tiek su B. Raskite m ir n. Sprendimas. Nagrinėkime bet kurį vieną sąskrydžio dalyvį A. Dalyvių, su kuriais jis yra lošęs šaškėmis, aibę pažymėkime U, o dalyvių, su kuriais jis nėra lošęs šaškėmis, aibę V. Tada U = 3m + 6 ir V = 1m 1 U = 9m 7. Kiekvienam B U tie 3m + 6 dalyviai, su kuriais B lošė šaškėmis, taip pasiskirsto tarp aibių: vienas dalyvis A, n dalyvių aibėje U ir likę 3m + 5 n dalyvių aibėje V. Todėl tokių partijų, kurias lošė žmogus iš U ir žmogus iš V, yra iš viso (3m + 6)(3m + 5 n). Kiekvienam C V iš 3m + 6 dalyvių, su kuriais C lošė šaškėmis, n dalyvių yra aibėje U. Todėl tokių partijų, kurias lošė žmogus iš U ir žmogus iš V, yra iš viso (9m 7)n. Vadinasi, (3m + 6)(3m + 5 n) = (9m 7)n ir n = 3 3m + 11m m 1 Kadangi skaičiai 3 ir 1m 1 yra tarpusavyje pirminiai, tai 1m 1 dalija skaičių 4 (3m +11m+10) = (1m 1)(m+3)+9m+43, todėl ir skaičių 4(9m+43) = 3(1m 1)+175 bei skaičių 175 = 5 7. Jei m 15, tai 1m > 175, o jei 8 m 14, tai 175 < 1m 1 < 175. Be to, 175 nesidalija iš 1m 1, kai m = 1,, 4, 5, 6, 7. Vadinasi, m = 3 ir tada n = 6. Pastaba. Situacija m = 3 ir n = 6 yra įmanoma. Grafų teorijos kalba tai reiškia, kad egzistuoja stipriai reguliarus grafas srg(36, 15, 6, 6). Įrodyta, kad tokių skirtingų grafų iš viso yra net Atsakymas: m = 3, n = Apskritimai ω 1 ir ω kertasi dviejuose taškuose A ir B. Tiesės l 1 ir l eina per B ir kerta apskritimą ω 1 atitinkamai taškuose C ir E, o apskritimą ω atitinkamai taškuose D ir F (čia C, E, D, F B). Tiesė CF kerta ω 1 ir ω atitinkamai taškuose P C ir Q F. Lankų BP ir BQ, atitinkamai esančių ω ir ω 1 viduje, vidurio taškai atitinkamai pažymėti 3

4 4 M ir N. Įrodykite, kad jei CD = EF, tai taškai C, F, M, N priklauso vienam apskritimui. Sprendimas. Kadangi ADC = ADB = AF B = AF E ir ACD = ACB = AEB = AEF (įbrėžtiniai kampai; žr. pav.) bei CD = EF, tai ACD = AEF, AD = AF, o trikampis ADF yra lygiašonis. Todėl ABC = 180 ABD = AF D = ADF = ABF, o tiesė AB dalija CBF pusiau. Taškas M dalija lanką BP pusiau, todėl tiesė CM dalija BCF pusiau. Analogiškai tiesė F N yra dalija CF B pusiau. Trikampio BCF pusiaukampinės kertasi viename taške I. Pagal susikertančių stygų teoremą, CI IM = AI IB = F I IN. Todėl ir atkarpos CM bei F N tenkina šią teoremą, o jų galai C, F, M, N priklauso vienam apskritimui. 5. Natūralųjį skaičių n vadinsime penkiadaliu, jei jis turi tokius penkis skirtingus teigiamus daliklius, kurių ketvirtųjų laipsnių suma lygi n. (Skaičiai 1 ir n taip pat yra skaičiaus n dalikliai.)

5 a) Įrodykite, kad penkiadalis skaičius visada dalijasi iš 5. b) Nustatykite, ar yra be galo daug penkiadalių natūraliųjų skaičių. Sprendimas. a) Tarkime, kad egzistuoja penkiadalis skaičius n, nesidalijantis iš 5. Tada n turi tokius skirtingus teigiamus daliklius d 1, d, d 3, d 4, d 5, kad n = d d 4 + d d d 4 5. Kadangi n nesidalija iš 5, tai ir visi d i nesidalija iš 5. Remiantis Mažąja Ferma teorema, d 4 i 1 (mod 5), kai i = 1,..., 5. Tačiau tada n d d 4 + d d d (mod 5) ir n dalijasi iš 5. Gavome prieštarą. Vadinasi, visi penkiadaliai skaičiai dalijasi iš 5. b) Imkime bet kokius penkis skirtingus natūraliuosius skaičius a, b, c, d, e ir apibrėžkime n = a 4 b 4 c 4 d 4 e 4 (a 4 + b 4 + c 4 + d 4 + e 4 ). Tada n dalijasi iš 5 skiringų skaičių d 1 = a bcde, d = ab cde, d 3 = abc de, d 4 = abcd e, d 5 = abcde, ir n = d d 4 + d d d 4 5. Taigi, kiekvienas toks n yra penkiadalis skaičius. Didindami skaičius a, b, c, d, e, skaičių n galime padaryti kiek norima didelį, todėl penkiadalių skaičių yra be galo daug. Atsakymas: b) penkiadalių skaičių yra be galo daug. 6. Raskite: a) reiškinio ir (1 x)(1 y)(1 xy) didžiausią galimą reikšmę, kai x, y [ 1; 1]. b) reiškinio (1 x)(1 y)(1 z)(1 xy)(1 yz)(1 xyz) didžiausią galimą reikšmę, kai x, y, z [ 1; 1]. Sprendimas. a) Tarkime, kad x [0; 1] ir y [ 1; 1]. Tada (1 x)(1 xy) (1 x)(1 + x) = 1 x 1. (1 x)(1 y)(1 xy) 1 y. Nelygybė (1 x)(1 y)(1 xy) teisinga, ir kai x [ 1; 1], y [0; 1] (įrodoma analogiškai). Įrodysime šią nelygybę likusiu atveju x [ 1; 0) 5

6 6 ir y [ 1; 0). Pastebėję, kad ji virsta lygybe, kai x = 1, y = 0, gauname, kad ieškoma didžiausia reikšmė yra. Imkime bet kokį x [ 1; 0) ir nagrinėkime kvadratinę funkciją f(y) = (1 x)(1 y)(1 xy) intervale y [ 1; 0]. Aišku, kad šią funkciją atitinkančios parabolės viršūnė yra taškas (y 0 ; f(y 0 )), kur y 0 = (1 + x)/(x). Jei y 0 [ 1; 0), tai x ( 1; 1/3]. Tada nes (1 x)3 f(y) f(y 0 ) = 4x = (1 + x )3 4 x, ( x 1)(4 x 1) 0 = 5 x 4 x + 1 = 8 x x x + 3 x + 1 = (1 + x ) 3. (Nelygybę (1 x)3 galima įrodyti, ir pasinaudojus išvestine.) Jei 4x y 0 / [ 1; 0), tai arba f(y) f(0) = 1 x, arba f(y) f( 1) = = (1 x ). Vadinasi, f(y) visiems y [ 1; 0). b) Pažymėkime P = (1 x)(1 y)(1 z)(1 xy)(1 yz)(1 xyz). Visi dauginamieji P 1 = 1 x, P = 1 y, P 3 = 1 z, P 1, = 1 xy, P,3 = 1 yz ir P 1,,3 = 1 xyz priklauso intervalui [0, ]. Tarkime, kad P,3 P 1,. Remiantis a), P 1 P P 1, ir P 3 P 1, P 1,,3 (čia a) dalies reiškinyje imame z vietoj x ir xy vietoj y). Tada P = P 1 P P 3 P 1, P,3 P 1,,3 P 1 P P 1, P 3 P 1, P 1,,3 = 4. Analogiškai, kai P 1, P,3, tai P P P 3 P,3 P 1 P,3 P 1,,3 = 4. Vadinasi, visada P 4. Ieškoma didžiausia reikšmė ir yra 4, nes P įgyja šią reikšmę, kai x = z = 1 ir y = 0. Atsakymas: a) ; b) 4.

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3)

Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) Lietuvos mokinių matematikos olimpiada Rajono (miesto) etapo užduočių 11-12 klasei sprendimai 2015 m. 1 uždavinys. Aistė užrašė skaičių seką: 1 (2 3) 4, 4 (5 6) 7, 7 (8 9) 10,..., 2014 (2015 2016) 2017.

Detaliau

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V

L I E T U V O S J A U N Ų J Ų M A T E M A T I K Ų M O K Y K L A 2. TRIKAMPIŲ ČEVIANOS ( ) Teorinę medžiagą parengė ir antrąją užduotį sudarė V L I T U V O S J U N Ų J Ų T T I K Ų O K Y K L. TRIKPIŲ ČVINOS (017 019) Teorinę medžiagą parengė ir antrąją užduotį sudarė Vilniaus universiteto docentas dmundas azėtis atematikos pamokose nagrinėjamos

Detaliau

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l

9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro l 9 paskaita 9.1 Erdvės su skaliarine daugyba Šiame skyriuje nagrinėsime abstrakčias tiesines erdves, kurioms apibrėžta skaliarinė daugyba. Jos sudaro labai svarbu normuotu ju erdviu šeimos pošeimį. Pilnosios

Detaliau

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst

DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, Magdalena Raseiniškė mėgst DVYLIKTOJI KALĖDINĖ KOMANDINĖ RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI Raseiniai, 0--. Magdalena Raseiniškė mėgsta pradėti bet kurį darbą tokiu uždaviniu, kurį, kaip ji sako,

Detaliau

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak

* # * # # 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės Sferos lygtis Tarkime, kad erdvėje apibrėžta Dekarto stačiak 1 TIESĖS IR PLOKŠTUMOS 1 1 Tiesės ir plokštumos 1.1 Lygtys ir taškų aibės 1.1.1 Sferos lygtis Tarkime kad erdvėje apibrėžta Dekarto stačiakampė koordinačių sistema Sfera su centru taške ir spinduliu yra

Detaliau

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun

4 skyrius Algoritmai grafuose 4.1. Grafų teorijos uždaviniai Grafai Tegul turime viršūnių aibę V = { v 1,v 2,...,v N } (angl. vertex) ir briaun skyrius Algoritmai grafuose.. Grafų teorijos uždaviniai... Grafai Tegul turime viršūnių aibę V = { v,v,...,v N (angl. vertex) ir briaunų aibę E = { e,e,...,e K, briauna (angl. edge) yra viršūnių pora ej

Detaliau

lec10.dvi

lec10.dvi paskaita. Euklido erdv_es. pibr_ezimas. Vektorin_e erdv_e E virs realiuju skaiciu kuno vadinama Euklido erdve, jeigu joje apibr_ezta skaliarin_e sandauga, t.y. tokia funkcija, kuri vektoriu porai u; v

Detaliau

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei

21. Ilgis, plotas, perimetras Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius rei Įvadas Šiame modulyje pateikti įvairaus sudėtingumo uždaviniai apie ilgį, perimetrą ir plotą. Sprendžiant uždavinius reikės pasitelkti kūrybinį mąstymą ir pasinaudoti jau turimomis žiniomis, įgytomis per

Detaliau

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa

III. SVEIKI NENEIGIAMI SKAIČIAI 3.1 Indukcijos aksioma Natūraliu ju skaičiu aibės sa voka viena svarbiausiu matematikoje. Nors natūralaus skaičiaus sa III SVEIKI NENEIGIAMI SKAIČIAI 31 Indukcijos aksioma Natūraliu aibės sa voka viena svarbiausiu matematikoje Nors natūralaus skaičiaus sa voka labai sena, bet šio skaičiaus buveinės sa voka buvo suformuluota

Detaliau

10 Pratybos Oleg Lukašonok 1

10 Pratybos Oleg Lukašonok 1 10 Pratybos Oleg Lukašonok 1 2 Tikimybių pratybos 1 Lema Lema 1. Tegul {Ω, A, P} yra tikimybinė erdvė. Jeigu A n A, n N, tai i) P (lim sup A n ) = P ( k=1 n=k A n ) = lim P ( n k n=ka n ), nes n=ka n monotoniškai

Detaliau

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t

Teorinių kontrolinių sąlygos ir sprendimai Vytautas Kazakevičius 2016 m. gruodžio 20 d. Teiginiai ( ). 1. (0.05 t.) Užrašykite formule tokį t Teorinių kontrolinių sąlygos sprendimai Vytautas Kazakevičius 206 m. gruodžio 20 d. Teiginiai (206-09-4).. (0.05 t.) Užrašykite formule tokį teiginį: jei iš dviejų teigiamų skaičių vienas yra mažesnis

Detaliau

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali

VI. TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 6.1 Teoremos apie tolydžiu funkciju tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami reali VI TOLYDŽIU IR DIFERENCIJUOJAMU FUNKCIJU TEOREMOS 61 Teoremos apie tolydžiu tarpines reikšmes Skaitytojui priminsime, kad nagrinėdami realiu ju skaičiu savybes atkreipėme dėmesi i tokia šios aibės elementu

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 13 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-14 Šaltinis Paskaita parengta pagal William Pugh Skip Lists: A Probabilistic Alternative to

Detaliau

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7. PAPRASČIAUSIOS DIFERENCIALINĖS LYGTYS ( ) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof. d LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 7 PAPRASČIAUSIOS DIFERENIALINĖS LYGTYS (07 09) Teorinę medžiagą parengė ir septintąją užduotį sudarė prof dr Eugenijus Stankus Diferencialinės lygtys taikomos sprendžiant

Detaliau

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta

GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta GRAFŲ TEORIJA Pasirenkamasis kursas, Magistrantūra, 3 sem. 2018 m. rudens semestras Parengė: Eugenijus Manstavičius Įvadas Pirmoji kurso dalis skirta grafų algoritmams, tačiau apibrėžus gretimumo matricą

Detaliau

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys

G E O M E T R I J A Gediminas STEPANAUSKAS Turinys 1 TIES ES IR PLOK TUMOS Plok²tumos ir tieses plok²tumoje normalines lygtys G E O M E T R I J A Gediminas STEPANAUSKAS 016 09 1 Turinys 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir tieses plok²tumoje normalines lygtys 111 Vektorine forma 11 Koordinatine forma 3 1 Bendroji plok²tumos

Detaliau

LMR200.dvi

LMR200.dvi Liet. matem. rink, 47, spec. nr., 27, 259 267 Lietuvos moksleiviu matematikos olimpiados 7 uždaviniuapžvalga Juozas Juvencijus MAČYS (MII) el. paštas: jmacys@ktl.mii.lt 56-oji Lietuvos moksleiviu matematikos

Detaliau

Microsoft PowerPoint Ekstremumai_naujas

Microsoft PowerPoint Ekstremumai_naujas Kelių kintamųjų funkcijos lokalūs ekstremumai. Ekstremumų egzistavimo būtina ir pakankama sąlygos. Sąlyginiai ekstremumai. Lagranžo daugikliai. Didžiausioji ir mažiausioji funkcijos reikšmės uždaroje srityje.

Detaliau

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee

TAIKOMOJI MATEMATIKA. 1-ojo testo pavyzdžiai serija **** variantas 001 x x + 12 lim = x 4 2x 8 1 2; 3 0; 2 1 2; 5 1; 6 2; 7 ; riba nee 001 x 1 2 + x + 12 lim x 4 2x 1 2; 0; 2 1 2; 5 1; 6 2; ; 1 2 4 riba neegzistuoja; 14x 2 2 + 29 lim x 1x 2 + 4x + 9 1 1; 2 29 9 ; ; 4 0; 5 riba neegzistuoja; 6 1 14; 14 1; 14 x + 1 lim x 4 x 4 1 riba neegzistuoja;

Detaliau

MatricosDetermTiesLS.dvi

MatricosDetermTiesLS.dvi MATRICOS Matricos. Pagrindiniai apibrėžimai a a 2... a n a 2 a 22... a 2n............ a m a m2... a mn = a ij m n matrica skaičių lentelė m eilučių skaičius n stulpelių skaičius a ij matricos elementas

Detaliau

PS_riba_tolydumas.dvi

PS_riba_tolydumas.dvi Funkcijos riba ir tolydumas Ribos apibrėžimas Nykstamosios funkcijos Funkcijos riba, kai x + Skaičių sekos riba Neaprėžtai didėjančios funkcijos Neapibrėžtumai Vienpusės ribos Funkcijos tolydumas Funkcijos

Detaliau

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at

MATEMATIKOS BRANDOS EGZAMINO PROGRAMOS MINIMALIUS REIKALAVIMUS ILIUSTRUOJANTYS PAVYZDŽIAI Egzamino programos minimalūs reikalavimai 1.3. Paprastais at MTEMTIKS BRNDS EGZMIN PRGRMS MINIMLIUS REIKLVIMUS ILIUSTRUJNTYS PVYZDŽII Egzamino programos minimalūs reikalavimai.. Paprastais atvejais patikrinti, ar duotoji seka ra aritmetinė/geometrinė progresija.

Detaliau

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s},

DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, DISKREČIOJI MATEMATIKA. Grafai serija 5800 variantas 001 Grafas G 1 = (V, B 1 ) apibrėžtas savo viršūnių bei briaunų aibėmis: V = {i, p, z, u, e, s}, B 1 = {{i, p}, {i, e}, {z, e}, {u, e}, {u, s}}. Grafai

Detaliau

Priedai_2016.indd

Priedai_2016.indd 1 testo užduočių vertinimo kriterijai Užd. Nr. Sprendimas ar atsakymas Taškai Vertinimas 1 Pasirinktas variantas D 1 Už teisingą atsakymą. 2 a) 939 1 Už teisingą atsakymą. 2 b) 1538 1 Už teisingą atsakymą.

Detaliau

(Microsoft Word - Pasiruo\360imas EE 10 KD-1)

(Microsoft Word - Pasiruo\360imas EE 10  KD-1) -as kontrolinis darbas (KD-) Kompleksiniai skaičiai. Algebrinė kompleksinio skaičiaus forma Pagrindinės sąvokos apibrėžimai. Veiksmai su kompleksinio skaičiais. 2. Kompleksinio skaičiaus geometrinis vaizdavimas.

Detaliau

Algoritmø analizës specialieji skyriai

Algoritmø analizës specialieji skyriai VGTU Matematinio modeliavimo katedra VGTU SC Lygiagrečiųjų skaičiavimų laboratorija Paskaitų kursas. 5-oji dalis. Turinys 1 2 KPU euristiniai sprendimo algoritmai KPU sprendimas dinaminio programavimo

Detaliau

PowerPoint Presentation

PowerPoint Presentation Algoritmai ir duomenų struktūros (ADS) 15 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2018-05-28 Grįžtamasis ryšys Ačiū visiems dalyvavusiems Daug pagyrimų Ačiū, bet jie nepadeda tobulėti.

Detaliau

Isvestiniu_taikymai.dvi

Isvestiniu_taikymai.dvi IŠVESTINIŲ TAIKYMAI Pagrindinės analizės teoremos Monotoninės funkcijos išvestinė Funkcijos ekstremumai Funkcijos didžiausia ir mažiausia reikšmės intervale Kreivės iškilumas Funkcijos grafiko asimptotės

Detaliau

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo

XI skyrius. KŪNAI 1. Kūno sa voka Šiame skyriuje nagrinėsime kūnus. Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijo XI skyrius KŪNAI 1 Kūno sa voka 1 1 Šiame skyriuje nagrinėsime kūnus Kūnas tai aibė k, kurioje apibrėžti aibės k elementu du vidiniai kompozicijos dėsniai, žymimi + ir, ir vadinami aibės k elementu sudėtimi

Detaliau

PowerPoint Presentation

PowerPoint Presentation Nacionalinio egzaminų centro projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas (kodas VP1-2.1-ŠMM-01-V-03-003) 1 seminaras Dalykinių

Detaliau

6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloniečių arba Herono algoritmas. Jau žiloje senovėje reikėjo mokėti traukti kavadratinę šaknį. Yra išlikęs

6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloniečių arba Herono algoritmas. Jau žiloje senovėje reikėjo mokėti traukti kavadratinę šaknį. Yra išlikęs 6. ŠAKNIES RADIMO ALGORITMAS Istorija. Babiloiečių arba Heroo algoritmas. Jau žiloje seovėje reikėjo mokėti traukti kavadratię šakį. Yra išlikęs Heroo iš Aleksadrijos gyveusio I mūsų eros amžiuje veikalas

Detaliau

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf

DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp graf DISKREČIOJI MATEMATIKA. Grafo tyrimas serija 5705 variantas 001 1 Grafas (, ) yra 1 pilnasis; 2 tuščiasis; 3 nulinis; 4 dvidalis. 2 Atstumas tarp grafo ({q, w, r, g}, {{q, w}, {w, r}, {w, g}}) viršūnių

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 1 paskaita 2019-02-06 Kontaktai Martynas Sabaliauskas (VU MIF DMSTI) El. paštas: akatasis@gmail.com arba martynas.sabaliauskas@mii.vu.lt Rėmai mokykloje Rėmai aukštojoje

Detaliau

ŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORT

ŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORT ŠEŠIOLIKTOJI RUDENINĖ KOMANDINĖ IR INDIVIDUALIOJI RASEINIŲ KRAŠTO OLIMPIADA PROFESORIAUS JONO KUBILIAUS TAUREI LAIMĖTI KOMANDINĖS DALIES ATSAKYMŲ KORTELĖ UŽDAVINIO NUMERIS TEISINGAS ATSAKYMAS. D. E. A

Detaliau

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul

Algebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7.1 Apibr eµzimas. Matrica A yra m eiluµciu¾ir n stul lgebra ir geometrija informatikams. Paskaitu¾ konspektas Rimantas Grigutis 7 paskaita Matricos. 7. pibr eµzimas. Matrica yra m eiluµciu¾ir n stulpeliu¾turinti staµciakamp e lentel e su joje i¾rašytais

Detaliau

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį.

TAIKOMOJI MATEMATIKA IR KIEKYBINIAI METODAI. Rašto darbas serija 3081 variantas Nustatykite funkcijos f(x) = x+2 x 6 cos ( 3x) apibrėžimo sritį. 00 Nustatykite funkcijos f() = +2 6 cos ( 3) apibrėžimo sritį (, 0) (0, 2) (2, + ) 2 (, 2) ( 2, + ) 3 (, 2] 4 [ 2, + ) 5 [2, ) 6 (, 2] 7 (, + ) 8 [ 2, 0) (0, + ) 0 (, 2) (2, + ) { a + b, kai 7, Raskite

Detaliau

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 7 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2015-04-13 Grafai Grafas aibių pora (V, L). V viršūnių (vertex) aibė, L briaunų (edge) aibė Briauna

Detaliau

Microsoft PowerPoint - SPACEOLYMP PRISTATYMAS Olimpiada Matematika [Compatibility Mode]

Microsoft PowerPoint - SPACEOLYMP PRISTATYMAS Olimpiada Matematika [Compatibility Mode] Nacionalinių ir tarptautinių mokslo olimpiadų dalyvių motyvacijos kosmoso tematika didinimas SPACEOLYMP 2016.01.01-2017.12.31 Projekto dalyvio atmintinė 2016-03-01 Iššūkiai 1) Informatika - programinė

Detaliau

Vigirdas Mackevičius 2. Sekos riba Paskaitu konspektas Intuityviai realiu ju skaičiu seka vadinama realiu ju skaičiu aibė, kurios elementai (vadinami

Vigirdas Mackevičius 2. Sekos riba Paskaitu konspektas Intuityviai realiu ju skaičiu seka vadinama realiu ju skaičiu aibė, kurios elementai (vadinami Vigirdas Mackevičius 2. Sekos riba Paskaitu kospektas Ituityviai realiu seka vadiama realiu aibė, kurios elemetai (vadiami sekos ariais) suumeruoti atūraliaisiais skaičiais (pradedat galbūt e vieetu, o

Detaliau

Microsoft PowerPoint Dvi svarbios ribos [Read-Only]

Microsoft PowerPoint Dvi svarbios ribos [Read-Only] Dvi svarbios ribos Nykstamųjų funkcijų palyginimas. Ekvivalenčios nykstamosios funkcijos. Funkcijos tolydumo taške apibrėžimas. Tolydžiųjų funkcijų atkarpoje savybės. Trūkiosios funkcijos. Trūko taškų

Detaliau

QR algoritmas paskaita

QR algoritmas paskaita Turinys QR algoritmas 4 paskaita Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 4 5 TA skaitiniai metodai ( MIF VU) Tiesinių lygčių sistemų sprendimas / 40 TA skaitiniai

Detaliau

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF

Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF Algoritmai ir duomenų struktūros (ADS) 2 paskaita Saulius Ragaišis, VU MIF saulius.ragaisis@mif.vu.lt 2016-02-15 Tiesinės duomenų struktūros Panagrinėsime keletą žinomų ir įvairiuose taikymuose naudojamų

Detaliau

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm

Printing BaziniaiSprendiniai&KrastutiniaiTaskai.wxm BaziniaiSprendiniai&KrastutiniaiTaskai.wxm / Baziniai sprendiniai ir kraštutiniai taškai (C) A.Domarkas, VU, 25 žr.: [] 2-252; [2] 9-98; [3] 33-; [] 89-98; [5] 6.3 Tegul tiesinių lygčių sistemos nežinomųjų

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 2 paskaita 2019-02-13 Algoritmo sąvoka Algoritmas tai tam tikra veiksmų seka, kurią reikia atlikti norint gauti rezultatą. Įvesties duomenys ALGORITMAS Išvesties duomenys

Detaliau

Slide 1

Slide 1 Duomenų struktūros ir algoritmai 12 paskaita 2019-05-08 Norint kažką sukonstruoti, reikia... turėti detalių. 13 paskaitos tikslas Susipažinti su python modulio add.py 1.1 versija. Sukurti skaitmeninį modelį

Detaliau

Magistro darbas

Magistro darbas KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS KOMPIUTERIŲ KATEDRA Vitalijus Martusevičius Mikrosensorinio tinklo autolokacijos sistemos sudarymas ir tyrimas Magistro darbas Darbo vadovas prof.

Detaliau

Microsoft Word - I_k_ST_PR-2006.doc

Microsoft Word - I_k_ST_PR-2006.doc Lietuvių kalbos egzamino programa Testu siekiama patikrinti raš ybos, skyrybos ir kalbos kultūros įgūdžius, žodžio dalių ir kalbos dalių mokė jimą, atidumą. Pastaba: skliausteliuose nurodomas vienas kitas

Detaliau

2.3. FUNKCIJOS TOLYDUMAS 3.1. Pavyzdys. Nagrinėkime funkciją y = x, x > 0, taško x = 1 aplinkoje. Pradžiai pakeiskime kintamuosius x= 1+ h. Gausime fu

2.3. FUNKCIJOS TOLYDUMAS 3.1. Pavyzdys. Nagrinėkime funkciją y = x, x > 0, taško x = 1 aplinkoje. Pradžiai pakeiskime kintamuosius x= 1+ h. Gausime fu .3. FUNKCIJOS TOLYDUMAS 3.. Pvyzdys. Ngriėime fuciją y =, > 0, tšo = plioje. Prdžii peisime itmuosius = + h. Gusime fuciją y = + h, h>. Iešoime toios pirmojo lipsio fucijos y = + h, uri būtų didesė už

Detaliau

Printing triistr.wxmx

Printing triistr.wxmx triistr.wxmx / Triįstrižainių lygčių sistemų sprendimas A.Domarkas, VU, Teoriją žr. []; [], 7-7; []. Pradžioje naudosime Gauso algoritmą, kuriame po įstrižaine daromi nuliai. Po to grįždami į viršų virš

Detaliau

BASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikit

BASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikit BASEINO OCTO+ 460, 540, 640 IR 840 MODELIO, AIKŠTELĖS PARUOŠIMAS IR MEDINIO KARKASO SURINKIMAS + LENTJUOSTES MONTAVIMAS + PATIESALO MONTAVIMAS Atlikite aikštelės nuţymėjimą po baseinu, pašalinkite augalus,

Detaliau

Tyrimu projektas

Tyrimu projektas Birutė Lisauskaitė (tyrėjo vardas, pavardė) Šv. Jono Nepomuko g. Nr. 132, Trakai, te. 8 620 12404, e-paštas elearai@takas.lt Kultūros paveldo departamentui prie Kultūros ministerijos (adresas pašto korespondencijai

Detaliau

2019 m. nuostatai 02 01

2019 m. nuostatai 02 01 Tvirtinu: Lietuvos šaškių federacijos viceprezidentė Romualda Šidlauskienė I. Tikslas ir uždaviniai: 2019 m. Lietuvos Respublikos šaškių čempionatų BENDRIEJI NUOSTATAI propaguoti šaškių sportą šalies gyventojų

Detaliau

NISSAN NV200 techniniai duomenys ir spalvos LT-16C-0917

NISSAN NV200 techniniai duomenys ir spalvos LT-16C-0917 NISSAN NV200 techniniai duomenys ir spalvos 19.02.2018 19-02-2018 tipas Variklis ir emisijos m³ CO 2 (g/km) Kaina su 21% PVM EUR Furgonas Furgonas 1.5 dci 90AG 4,2 5 M/T Comfort 131 17 497 Furgonas 1.5

Detaliau

Gabių vaikų ugdymo mokymo priemonių dokumentas parengtas, įgyvendinant ES lėšomis finansuojamą projektą Gabių vaikų ugdymo efekytyvumo didinimas šviet

Gabių vaikų ugdymo mokymo priemonių dokumentas parengtas, įgyvendinant ES lėšomis finansuojamą projektą Gabių vaikų ugdymo efekytyvumo didinimas šviet 61 rogramos 1.5 temos nalizuoti ir prognozuoti vartotojų reakciją į kainų pokytį, remiantis paklausos elastingumu kainoms, ir gamintojų reakciją į kainų pokytį, remiantis pasiūlos elastingumu kainoms raplėtimas

Detaliau

13/6 t. LT Europos Sąjungos oficialusis leidinys L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS TARYBOS DIREKTYVA 1979 m. gruodž

13/6 t. LT Europos Sąjungos oficialusis leidinys L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS TARYBOS DIREKTYVA 1979 m. gruodž 3 31980L0181 L 39/40 EUROPOS BENDRIJŲ OFICIALUSIS LEIDINYS 1980 2 15 TARYBOS DIREKTYVA 1979 m. gruodžio 20 d. dėl valstybių narių įstatymų, susijusių su matavimo vienetais, suderinimo ir Direktyvos 71/354/EEB

Detaliau

Informacijosmokslai50-n.indd

Informacijosmokslai50-n.indd ISSN 1392-0561 INFORMACIJOS MOKSLAI 2009 50 Tikimybinis dažnų posekių paieškos algoritmas Julija Pragarauskaitė Matematikos ir informatikos instituto doktorantė Institute of Mathematics and Informatics,

Detaliau

Slide 1

Slide 1 Nr. VP1.-1.3-SADM-01-K-02-008 Įvadinio modulio tematikos trumpa apžvalga Bendrieji diskriminacijos pagrindai ir jų apraiškos Lyčių lygybės samprata, stereotipai Žiniasklaidos įtaka stereotipų formavimuisi

Detaliau

NELLI

NELLI UAB AUKSVA P. Vaičaičio g., T-7 Šakiai ietuva Tel. +70 5 058 Faks. +70 5 057 El.p. info@lauksva.lt UŽDAOJI AKCINĖ BENDOVĖ www.lauksva.lt UŽDAOJI AKCINĖ BENDOVĖ GAMINIO PIVAUMAI: Modernus dizainas Jūsų

Detaliau

Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tir

Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tir Matematinės analizės idėjų raidos atspindžiai tarpukario Lietuvoje Rimas Norvaiša (2014 m. birželio 26 d.) Santrauka. Matematinė analizė formavosi tiriant judėjimą, išreiškiamą priklausomybėmis tarp kintamųjų

Detaliau

A

A ALGORITMAI 14. Algoritmo sąvoka ir savybės Dirbdami kasdieninius darbus dažniausiai nesusimąstome, kokius veiksmus ir kokia tvarka atliekame. Apie tai pagalvojame, kai norime kokį nors darbą pavesti kitam.

Detaliau

Mokinių tiriamojo darbo įgūdžių formavimas

Mokinių tiriamojo darbo įgūdžių formavimas Mokinių tiriamojo darbo įgūdžių formavimas per programavimo pamokas ir projektinėje veikloje Renata Burbaitė Panevėţio Juozo Balčikonio gimnazija Tiriamasis darbas mokykloje: ugdo mokinių kritinį mąstymą;

Detaliau

Duomenų vizualizavimas

Duomenų vizualizavimas Duomenų vizualizavimas Daugiamačių duomenų vizualizavimas: projekcijos metodai Aušra Mackutė-Varoneckienė Tomas Krilavičius 1 Projekcijos metodai Analizuojant daugiamačius objektus, kuriuos apibūdina n

Detaliau

PowerPoint Presentation

PowerPoint Presentation Seminaras: Kokybės vadybos iniciatyvos viešajam sektoriui" Metodai kokybiškiems viešojo sektoriaus sprendimams sąnaudų ir naudos analizės pagrindai Jonas Jatkauskas Viešosios politikos ekspertas UAB BGI

Detaliau

1. Matematinės dėlionės Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvai

1. Matematinės dėlionės Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvai Įvadas Šiame modulyje pateiktos įvairaus sudėtingumo matematinės dėlionės. Jos padės mokytis skaičiuoti mintinai ir rasti įvairias sprendimo galimybes. Prieš kiekvieną naujos rūšies dėlionę pateiktas pavyzdys,

Detaliau

PowerPoint Presentation

PowerPoint Presentation XIII tarptautinės geografijos olimpiada Pekine. Pasiruošimas, užduočių analizė, įžvalgos. Pasiruošimas iki pasaulinės olimpiados Teminis pasiruošimas Techninis pasiruošimas Individualus darbas su mokiniais

Detaliau

1.Kiekvieną mokymo(si) priemonių (reikmenų) rinkinį priešmokyklinio ugdymo klasėms sudaro: Eil Nr. Prekės pavadinimas Kiekis, vnt./komplekt ai 1. Sąsi

1.Kiekvieną mokymo(si) priemonių (reikmenų) rinkinį priešmokyklinio ugdymo klasėms sudaro: Eil Nr. Prekės pavadinimas Kiekis, vnt./komplekt ai 1. Sąsi .Kiekvieną mokymo(si) priemonių (reikmenų) rinkinį priešmokyklinio ugdymo klasėms sudaro: Nr. Kiekis, vnt./komplekt ai. (Ryškiomis linijomis, su vidinėmis ir išorinėmis paraštėmis. Popierius turi būti

Detaliau

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluat VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Atsitiktinės paieškos optimizavimo algoritmų vertinimas Evaluation of Random Search Optimization Algorithms Magistro

Detaliau

PedalBox sistema tinka žemiau išvardintoms transporto priemonėms. PedalBox greičio pedalo chip tuning sistema. Greitesnis atsakas į greičio pedalą ir

PedalBox sistema tinka žemiau išvardintoms transporto priemonėms. PedalBox greičio pedalo chip tuning sistema. Greitesnis atsakas į greičio pedalą ir PedalBox sistema tinka žemiau išvardintoms transporto priemonėms. PedalBox greičio pedalo chip tuning sistema. Greitesnis atsakas į greičio pedalą ir sportiška charakteristika - iki 65% greitesnė reakcija.

Detaliau

DB sukūrimas ir užpildymas duomenimis

DB sukūrimas ir užpildymas duomenimis DB sukūrimas ir užpildymas duomenimis Duomenų bazės kūrimas Naujas bendrąsias DB kuria sistemos administratorius. Lokalias DB gali kurti darbo stoties vartotojasadministratorius. DB kuriama: kompiuterio

Detaliau

Pofsajungu_gidas_Nr11.pdf

Pofsajungu_gidas_Nr11.pdf 2 p. 3 p. 4 p. Šiame straipsnyje pristatoma profsąjungų svarba ir galimos jų veiklos kryptys, kovojant su diskriminacija darbo rinkoje. Ši profesinių sąjungų veiklos sritis reikšminga ne tik socialiai

Detaliau

Paslaugų teikimo aprašymas

Paslaugų teikimo aprašymas NACIONALINĖ ŽEMĖS TARNYBA PRIE ŽEMĖS ŪKIO MINISTERIJOS TVIRTINU: Nacionalinės žemės tarnybos prie Žemės ūkio ministerijos direktorė Daiva Gineikaitė 2015-06-30 NUOSAVYBĖS TEISIŲ Į ŽEMĘ (MIŠKĄ IR VANDENS

Detaliau

Dažniausios IT VBE klaidos

Dažniausios IT VBE klaidos Dažniausios IT VBE klaidos Renata Burbaitė renata.burbaite@gmail.com Kauno technologijos universitetas, Panevėžio Juozo Balčikonio gimnazija 1 Egzamino matrica (iš informacinių technologijų brandos egzamino

Detaliau

SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS

SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS SKENAVIMO KOMPIUTERINIU TOMOGRAFU PROTOKOLAS TURINYS KLUBO SĄNARIO 3D REKONSTRUKCIJA... 3 DUBENKAULIO 3D REKONSTRUKCIJA... 4 KELIO SĄNARIO 3D REKONSTRUKCIJA... 5 PETIES SĄNARIO 3D REKONSTRUKCIJA... 6 KAUKOLĖS

Detaliau

Vilniaus Universiteto Žygeivių Klubas

Vilniaus Universiteto Žygeivių Klubas 2013 m. KKT varžybų Vilniaus universiteto taurei laimėti Trasų schemos ir aprašymai Atrankinės trasos Detalus atrankinių trasų aiškinimas bus varžybų dieną prieš startą. Startas bus bendras visoms komandoms,

Detaliau

VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika (01P

VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika (01P VILNIAUS UNIVERSITETAS LAURA ŽVINYTĖ DISKRETUS TOLYGUSIS RIBINIS DĖSNIS ADITYVIOSIOMS FUNKCIJOMS Daktaro disertacija Fiziniai mokslai, matematika 0P) Vilnius, 207 Disertacija rengta 20-207 metais Vilniaus

Detaliau

Vietos projektų, įgyvendinamų bendruomenių inicijuotos vietos plėtros būdu, administravimo taisyklių 3 priedas (Pavyzdinė Pirminės vietos projekto par

Vietos projektų, įgyvendinamų bendruomenių inicijuotos vietos plėtros būdu, administravimo taisyklių 3 priedas (Pavyzdinė Pirminės vietos projekto par Vietos projektų, įgyvendinamų bendruomenių inicijuotos vietos plėtros būdu, administravimo taisyklių 3 priedas (Pavyzdinė Pirminės vietos projekto paraiškos, teikiamos pagal dvisektorę VPS, forma) PIRMINĖ

Detaliau

1 PATVIRTINTA Valstybės įmonės Registrų centro direktoriaus 2018 m. gruodžio 20 d. įsakymu Nr. v-487 NEKILNOJAMOJO TURTO NORMATYVINĖS VERTĖS 2019 META

1 PATVIRTINTA Valstybės įmonės Registrų centro direktoriaus 2018 m. gruodžio 20 d. įsakymu Nr. v-487 NEKILNOJAMOJO TURTO NORMATYVINĖS VERTĖS 2019 META 1 PATVIRTINTA Valstybės įmonės Registrų centro direktoriaus 2018 m. gruodžio 20 d. įsakymu Nr. v-487 NEKILNOJAMOJO TURTO NORMATYVINĖS VERTĖS 2019 METAMS MIESTUOSE Eil. Nr. Masinio nekilnojamojo turto vertinimo

Detaliau

Microsoft Word - Fasadiniai_pastoliai_SL70_naudojimo_instrukcija_LT.doc

Microsoft Word - Fasadiniai_pastoliai_SL70_naudojimo_instrukcija_LT.doc prie leidimo pažymos Z-8.1-29 1 psl. 1. Bendroji dalis 1.1 Universalieji pastoliai SL70 yra iš gatavų konstrukcijų surenkami plieno karkaso pastoliai, kurių sisteminis plotis yra 0,74 m. Sekcijų ilgiai

Detaliau

EUROPOS KOMISIJA Briuselis, C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) / dėl bendros sistemos techninių standa

EUROPOS KOMISIJA Briuselis, C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) / dėl bendros sistemos techninių standa EUROPOS KOMISIJA Briuselis, 2017 07 11 C(2017) 4679 final KOMISIJOS ĮGYVENDINIMO SPRENDIMAS (ES) /... 2017 07 11 dėl bendros sistemos techninių standartų ir formatų, kad EURES portale būtų galima susieti

Detaliau

VABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450)

VABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450) VABALNINKO BALIO SRUOGOS GIMNAZIJA Vabalninko Balio Sruogos gimnazija K.Šakenio g. 12, Vabalninkas, Biržų raj. Tel. (8-450) 54275 El.p.rastine@vabalninko.birzai.lm.lt. GIMNAZIJOS VEIKLOS KOKYBĖS ĮSIVERTINIMO

Detaliau

Diferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas.

Diferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas. Turinys Diferencialinių lygčių dalinėmis išvestinėmis sprendimo metodai. Įvadas. Olga Štikonienė Diferencialinių lygčių ir skaičiavimo matematikos katedra, MIF VU 2017-05-29 Egzamino klausimai: 1) Diferencialinės

Detaliau

Privalomai pasirenkamas istorijos modulis istorija aplink mus I dalis _suredaguotas_

Privalomai pasirenkamas istorijos modulis istorija aplink mus I dalis  _suredaguotas_ P R O J E K T A S VP1-2.2-ŠMM-04-V-01-001 MOKYMOSI KRYPTIES PASIRINKIMO GALIMYBIŲ DIDINIMAS 14-19 METŲ MOKINIAMS, II ETAPAS: GILESNIS MOKYMOSI DIFERENCIJAVIMAS IR INDIVIDUALIZAVIMAS, SIEKIANT UGDYMO KOKYBĖS,

Detaliau

Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui

Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui Rekomendacijos vietinės reikšmės kelių su žvyro danga taisymui LAKD TNT skyriaus vedėjas Evaldas Petrikas Reglamentavimas Automobilių kelių standartizuotų dangų konstrukcijų projektavimo taisyklės KPT

Detaliau

PIRAMIDĖ yra atskira biliardo šaka, turinti savo taisykles ir biliardo įrangos reikalavimus. Vyksta oficialios šių ţaidimų varţybos: 1. LAISVOJI PIRAM

PIRAMIDĖ yra atskira biliardo šaka, turinti savo taisykles ir biliardo įrangos reikalavimus. Vyksta oficialios šių ţaidimų varţybos: 1. LAISVOJI PIRAM PIRAMIDĖ yra atskira biliardo šaka, turinti savo taisykles ir biliardo įrangos reikalavimus. Vyksta oficialios šių ţaidimų varţybos: 1. LAISVOJI PIRAMIDĖ 2. KOMBINUOTA PIRAMIDĖ 3. DINAMIŠKOJI PIRAMIDĖ

Detaliau

KAUNO JONO PAULIAUS II GIMNAZIJA TVIRTINU Gimnazijos direktorė Ramutė Latvelienė 2019 M. KOVO MĖNESIO 1-4 KLASIŲ VEIKLOS PLANAS Diena Sav. diena Val.

KAUNO JONO PAULIAUS II GIMNAZIJA TVIRTINU Gimnazijos direktorė Ramutė Latvelienė 2019 M. KOVO MĖNESIO 1-4 KLASIŲ VEIKLOS PLANAS Diena Sav. diena Val. KAUNO JONO PAULIAUS II GIMNAZIJA TVIRTINU Gimnazijos direktorė Ramutė Latvelienė 2019 M. KOVO MĖNESIO 1-4 KLASIŲ VEIKLOS PLANAS Diena Sav. diena Val. Renginio pavadinimas Koordinatorius Dalyvauja Vieta

Detaliau

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA

VERSLO IR VADYBOS TECHNOLOGIJŲ PROGRAMA PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 2007 m. rugsėjo 6 d. įsakymu Nr. ISAK-1790 VERSLO IR VADYBOS TECHNOLOGIJŲ BENDROJI PROGRAMA MOKINIAMS, BESIMOKANTIEMS PAGAL VIDURINIO UGDYMO

Detaliau

Printing AtvirkstineMatrica.wxmx

Printing AtvirkstineMatrica.wxmx AtvirkstineMatrica.wxmx / Atvirkštinė matrica A.Domarkas, VU, Teoriją žr. [], 8-; []. Figure : Toliau pateiksime atvirkštinės matricos apskaičiavimo būdus su CAS Maxima. su komanda invert pavyzdys. [],

Detaliau

Microsoft Word - Paslauga _leidimai išvezti iš LR_ Į-29 AP-15.doc

Microsoft Word - Paslauga _leidimai išvezti iš LR_ Į-29 AP-15.doc PATVIRTINTA Kultūros paveldo departamento prie Kultūros ministerijos direktoriaus 2014 m. vasario 5 d. įsakymu Nr. Į-29 KULTŪROS PAVELDO DEPARTAMENTO PRIE KULTŪROS MINISTERIJOS ADMINISTRACINĖS PASLAUGOS

Detaliau

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr

Projektas „Europos kreditų perkėlimo ir kaupimo sistemos (ECTS) nacionalinės koncepcijos parengimas: kreditų harmonizavimas ir mokymosi pasiekimais gr Studijų programos aprašas Studijų programos pavadinimas Informatika Aukštojo mokslo institucija (-os), padalinys (-iai) Vilniaus universitetas, Matematikos ir informatikos fakultetas, Informatikos katedra

Detaliau

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil

TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eil TIESINĖ ALGEBRA Matricos ir determinantai Matricos. Transponuota matrica. Nulinė ir vienetinė matrica. Kvadratinė matrica. Antrosios ir trečiosios eilės determinantai. Minorai ir adjunktai. Determinantų

Detaliau

Jurbarko r. Skirsnemunės Jurgio Baltrušaičio pagrindinės mokyklos direktorės Dainoros Saulėnienės 2018 METŲ VEIKLOS ATASKAITA Nr. 1 Skirsne

Jurbarko r. Skirsnemunės Jurgio Baltrušaičio pagrindinės mokyklos direktorės Dainoros Saulėnienės 2018 METŲ VEIKLOS ATASKAITA Nr. 1 Skirsne Jurbarko r. Skirsnemunės Jurgio Baltrušaičio pagrindinės mokyklos direktorės Dainoros Saulėnienės 2018 METŲ VEIKLOS ATASKAITA 2019-01-18 Nr. 1 Skirsnemunė I SKYRIUS STRATEGINIO PLANO IR METINIO VEIKLOS

Detaliau

1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ

1 Vaizdu vidurkinimas ir požymiu išskyrimas 1.1 Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v σ Vaizdu vidurkinimas ir požymiu išskyrimas. Glodus vienmatis eksponentinis filtras Apibrėšime eksponentini tolydu kintamojo x filtra formule ( v (x) = + x ) e x, x (, ). () Čia yra filtro parametras. Kad

Detaliau

Telšių rajono Žarėnų Minijos vidurinės mokyklos Mokinių, dalyvavusių respublikinėse olimpiadose, konkursuose, čempionatuose sąrašas ( mokslo

Telšių rajono Žarėnų Minijos vidurinės mokyklos Mokinių, dalyvavusių respublikinėse olimpiadose, konkursuose, čempionatuose sąrašas ( mokslo Telšių rajono Žarėnų Minijos vidurinės mokyklos Mokinių, dalyvavusių respublikinėse olimpiadose, konkursuose, čempionatuose sąrašas (2014-2015 mokslo metai) Nr. Olimpiados, konkurso, čempionato pavadinimas

Detaliau

Microsoft Word - 8 Laboratorinis darbas.doc

Microsoft Word - 8 Laboratorinis  darbas.doc Laboratorinis darbas Nr. 8 MOP (metalo sido puslaidininkio) struktūrų tyrimas aukštadažniu -V charakteristikų metodu Darbo tikslas: 1. Nustatyti puslaidininkio laidumo tipą. 2. Nustatyti legiravimo priemaišų

Detaliau

MODENA MODENA midi MODENA mini Techninės charakteristikos ir instrukcijos 2018

MODENA MODENA midi MODENA mini Techninės charakteristikos ir instrukcijos 2018 MODENA MODENA midi MODENA mini Techninės charakteristikos ir instrukcijos 08 Turinys MODENA Sistemos MODENA, MODENA HIDE charakteristikos Sistemos MODENA, MODENA HIDE sudedamosios dalys MODENA HIDE sistemos

Detaliau

Mercedes-Benz Actros MP PRIEKINIS ŽIBINTAS DB ACTROS(9/96-9/03) (BE POSŪKIO, BE HALOGENO) D.P. PRIEKINIS ŽIBINTAS DB

Mercedes-Benz Actros MP PRIEKINIS ŽIBINTAS DB ACTROS(9/96-9/03) (BE POSŪKIO, BE HALOGENO) D.P. PRIEKINIS ŽIBINTAS DB Mercedes-Benz Actros MP1 5000648 5001089 5003111 5003112 PRIEKINIS ŽIBINTAS DB ACTROS(9/96-9/03) (BE POSŪKIO, BE HALOGENO) D.P. PRIEKINIS ŽIBINTAS DB ACTROS(9/96-9/03) (BE POSŪKIO, BE HALOGENŲ) K.P. PRIEKINIS

Detaliau

N E K I L N O J A M O J O T U R T O R I N K O S D A L Y V I Ų A P K L A U S O S A P Ž V A L G A / 2 NAMŲ ŪKIŲ FINANSINĖS ELG- SENOS APKLAUSOS

N E K I L N O J A M O J O T U R T O R I N K O S D A L Y V I Ų A P K L A U S O S A P Ž V A L G A / 2 NAMŲ ŪKIŲ FINANSINĖS ELG- SENOS APKLAUSOS NAMŲ ŪKIŲ FINANSINĖS ELG- SENOS APKLAUSOS APŽVALGA 1 NEKILNOJAMOJO TURTO RINKOS DALYVIŲ APKLAUSOS APŽVALGA 213 217 m. I ketvirtis 213 ISSN 2424-5828 (ONLINE) 2 NEKILNOJAMOJO TURTO RINKOS DALYVIŲ APKLAUSOS

Detaliau

PowerPoint Presentation

PowerPoint Presentation SPRENDIMAI ENERGIŠKAI EFEKTYVIEMS PASTATAMS Reikalavimai A+ energinio naudingumo klasės gyvenamiesiems pastatams IKI 2019 02 01 NUO 2019 02 01 0,25 C 1 0,375; C 2 0,80 Pastato (jo dalies) energijos vartojimo

Detaliau